

Please note: this is a reviewed preprint, excerpted from a compiled volume,

that may subject to style modifications by the Editors and the Publisher

Preliminary citing:
Storti, M.A. and Ferreri, J.C., “Numerical Methods in Nuclear Thermal-Hy-

draulics, Chapter 20”, in: “Handbook on Thermal-Hydraulics in WCNR”,

F.S. D’Auria and Y. Hassan, Eds., Elsevier, to be published, 2022

CHAPTER 20

NUMERICAL METHODS IN NUCLEAR THERMAL-HYDRAULICS

Mario Alberto Storti

CIMEC, Predio CONICET "Dr. Alberto Cassano"

Colectora. Ruta Nac. 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina

mario.storti@gmail.com

Juan Carlos Ferreri

Academia Nacional de Ciencias de Buenos Aires, Av. Alvear 1711, 3º, 1014 CABA,

Argentina

jcferreri@ciencias.org.ar jcferreri@gmail.com

mailto:mario.storti@gmail.com
mailto:jcferreri@ciencias.org.ar
mailto:jcferreri@gmail.com

2

Abstract

Numerical methods utilized for the solution of governing fluid flow equations

are considered, with emphasis on the influence of the adopted schemes in the

solution and the computational costs of the approximations. Consequently, the

subject as presented is a mix between algorithmic, modeling, and algebraic

aspects, keeping the usual separation in the type of partial differential

equations. A detailed view of the theory manuals of the major Thermal

Hydraulic codes permits the verification of the coherence of this approach.

The verification of the validity of the solutions and the automatic sensitivity

analysis of codes is also analyzed.

3

This Nomenclature is aimed at listing the main symbols and abbreviations used. All variables are

defined when they first appear in the text.

NOMENCLATURE

ACRONYMS

1D, 2D, 3D One, two and three dimensional space dimensions

CFD Computational Fluid Dynamics

MMS Method of Manufactured Solutions

PDE Partial differential equations

SYS-TH System Thermal Hydraulics

TH Thermal Hydraulics

DA Discrete Approximation

TE Truncation Error

IC Initial Conditions

BC Boundary Conditions

A Linear restricted operator

CN Crank-Nicholson

SETS Stability Enhancing Two-Step

ADI Alternating Direction Implicit

SPD Symmetric Positive Definite (matrix)

CG Conjugate Gradient

VARIABLES

C Transport Velocity

COU Courant Number

I Identity Operator

L Linear Differential operator

N Non-linear Differential operator

Nops Number of operations

R Boundary of the integration domain D

u Unknown theoretical solution

U Discrete approximation for u

x, t Space and Time coordinates

Pe Peclet Number

k Thermal conductivity

a Diffusion coefficient

D Laplacian operator (Equation 20.47)

x, t Space and Time step intervals

, D Limit of a regular integration domain in space and time

SUBINDEXES

i Position of a point in space discretization

h Discrete version of a differential operator

SUPERINDEXES

n Position of a point in time discretized domain

4

Chapter Foreword

This chapter considers a basic description of numerical methods, starting with the

discretization of partial differential equations (PDE) relevant to governing equations.

Two basic techniques are considered: finite differences and finite volumes. This restricted

choice is not arbitrary since they are the most used in Thermal Hydraulics (TH) industrial

codes. It is not possible, in the limited space of one chapter, to consider all the variations

of numerical methods. Furthermore, it is assumed that the reader has basic skills in the

topics, so the focus will be on the implications of the numerical schemes and their

interaction with the solutions. The scope will be limited to transient approaches in the

time-space domain, with the obvious exception of the elliptic equations of the Poisson

type. This choice implies leaving apart the phase domain methods, which are typically

applied to pure stability analysis or wave propagation analysis. The starting point for the

derived approximations will be scalar one-dimensional PDE and different approaches will

include explicit and implicit expressions. In the case of multiple space dimensions,

implicit methods will imply considering direct matrix algebra and alternating direction

implicit methods, especially for parabolic and elliptic cases.

Whenever possible, the discrete procedures derivation will be also based on physical

reasoning. Then, the truncation error analysis will be important. This puts into evidence

the influence of the Los Alamos school. Despite this, the analysis of truncation error and

the formal definition of essential aspects like consistency, stability, and convergence will

be discussed. Even when this chapter is not oriented to numerical analysis, some aspects

will be considered, following G.I. Marchuk, Marchuk, 1975. Usual terminology, like

robustness, accuracy, and some other aspects will be explicitly addressed. At this point,

it may be obvious that the numerical regularization via added numerical viscosity will be

the chosen path whenever necessary. In this case, the question of the accuracy of the

solution concerning mesh size and time step will be addressed and exemplified. Other

chapters (e.g., Chapter 5 on Governing Equations, Chapter 11 on the Structure of SYS-

TH codes and Chapter 22 dealing with numerical aspects connected with Verification)

have considered some of the issues just mentioned in different detail, making it possible

to restrict the analysis in this Chapter to the numerics of discretization. A basic feature of

the numerical approach is the preservation of the conservation of mass and energy. This

property is intrinsic to the governing equations and must be respected. This may be

considered obvious, but it was not always so in considering the momentum equation.

Because of this reason, this aspect will be considered.

Two aspects related to the discretization of PDE are a) the verification of the correctness

of the solution obtained using the numerical representation and, b) the automatic

computation of sensitivities to the PDE coefficients or the discretization parameters. In

the first case, the Method of Manufactured Solutions (or MMS) has been systematized by

P. Roache (see also Chapter 22 of the book), even when more elementary procedures are

possible. In the second case, automatic differentiation of codes can be used, employing

available software. Both cases will be addressed.

5

The discretization of the governing equations leads to the problem of solving the

associated algebraic problem. This implies considering the coupling of dependent

variables and the choice of implicitness in the solution procedure. The usual pressure-

velocity solution, the coupling of the temperature or enthalpy field, and the concentration

or turbulence modeling in the simple case of single-phase TH, lead to large sets of linear

algebraic equations. Coupled Heat Conduction increases the number of equations very

much. These systems may be solved by iterative or direct methods. The choice depends

on the availability of adequate computing resources. Consequently, the discussion of the

aspects related to the use of these methods is in order.

20.1 An Introduction to numerical methods: basic concepts on the

discretization of partial differential equations

This section aims at considering several aspects of numerical techniques giving the

background to the computation of Thermal-Hydraulics as applied in industrial codes. It

will be shown that there is plenty of consolidated literature and concepts on numerical

methods in the last 50 years and that this is not a recent activity concerning the TH of

Nuclear Safety. Many outstanding people contributed to this subject in the last decades.

A brief account of early contributions (and contributors) is presented. In this way, Nuclear

Safety benefits from well-developed techniques in other areas of Computational

Mechanics. Most publications deal with the needs and challenges posed by physics and

with clarifying the degree of detail required by Nuclear Safety.

Discrete numerical techniques applications are not a recent activity concerning the

Thermal-Hydraulics of all the flow stages of transients in nuclear installations. In the

Authors´ view, it was the work at Los Alamos Scientific Laboratory (LANL), which, now

more than fifty years ago in those days of “open” exchange of scientific information,

opened the way to “widespread” numerical modeling in Fluid Dynamics. See, e.g.,

LANSCE, (1981), summarizing work done up to 1981 at LANL. Fresh persons may be

tempted to consider that the state of the art fifty years ago was rather crude (instead of

this, computers were not powerful enough), however, contributions like the one by

Roache, (1972), and (1998), giving an important and comprehensive review and

recommendations on numerical techniques and CFD by 1972, may clear this question. A

few people that contributed to the development from the numerical analysis side will be

mentioned in what follows because the list is too long. The names of R. Courant, K.O.

Friedrichs, D. Hilbert, J. von Neumann, P.D. Lax, R.D. Richtmyer, G.I. Marchuk (in

Russia), and W.F. Ames must also be mentioned. It must be stressed that the Finite

Element Method was starting to be applied to solve the Navier-Stokes equations. The

Drift-Flux theory of two-phase flow, as developed by Zuber and Findlay in 1956 and by

M. Ishii in his 1975 book (see the general list of references of the book), was the two-

phase fluid model that allowed generating results of Nuclear Safety significance through

its implementation in the TRAC code and other hydrodynamics codes at LANL.

6

Before continuing, we introduce hereafter a suitable conceptual excerpt from

Scannapieco and Harlow, 1995. “In as much as we can simulate reality, we can use the

computer to make predictions about what will occur in a certain set of circumstances …

. … Finite-difference techniques can create an artificial laboratory for examining

situations which would be impossible to observe otherwise, but we must always remain

critical of our results …Finite differencing can be an extremely powerful tool, but

only when it is firmly set in a basis of physical meaning. For a finite-difference code to

be successful, we must start from the beginning, dealing with simple cases and examining

our logic each step of the way”. The importance of this assertion must be emphasized

today, given the advancement of CFD applications and the relatively easy access to

sophisticated CFD tools. The philosophy of merging physical intuition and numerical

properties has been always inspiring for CFD practitioners and code developers. This

tradition persists, and an example may be found in Knoll et al., 2005.

It seems that there are at least two decades of delay in the detailed computation of fluid

flow considering other problems in Applied Mechanics. The reasons for this delay, inter

alia, maybe:

a) Scaling laws usually “force” to quasi 1D integral test facilities representations of

real-life installations, with pre-established flow patterns.

b) A huge effort was focused on the development of a representative physical data-

base (amenable to 1D analysis) and separate effects on the other side (like plume

analysis, non-symmetric flow distribution, particular aspects of reactor compo-

nents behavior, etc.) affordable through detailed computational techniques.

c) Code assessment for safety analysis also imposed and still imposes a huge effort

for 1D.

d) Time scales to solve problems realistically (as a compromise between cell Courant

number limitation for fast transients using semi-implicit methods and time inac-

curacies, like damping, for implicit methods impose a large number of time steps

to span long time transients (e.g., in SBLOCA); and

e) The Ill-posedness of the governing equations “precluded” the search for detailed

convergence of solutions, leading to coarse grid computations and stabilization of

flow solvers solutions by numerical means.

There is another aspect that is somewhat redundant with the previous paragraph. As stated

by Ferreri and Ambrosini, 2002, in dealing with natural circulation problems,

“Sometimes, scaling leads to the adoption of the 1-D approximation; this may, in turn,

hide important aspects of the system physics. A simple example of this situation consists

in keeping the height of the system unchanged to get the same buoyancy. Then, if the

system is scaled accordingly to the power/volume ratio, the cross-section area of the

volume will be reduced; this leads to a much smaller pipe diameter that makes the 1-D

representation reasonable, at the cost of eliminating the possibility of fluid internal

recirculation A workaround for this situation is providing paths for recirculation,

in the form of additional, interconnected components; however, this solution may impose

7

the flow pattern in the system and the balance between these aspects is a challenge to any

practitioner in natural circulation modeling”.

It is important to start with a general formulation of a discrete approximation of an

evolution problem, without making differences for the moment on the type of differential

equation, because it gives the basis for nearly all discrete formulations of the Navier-

Stokes equations. The approach to be followed is the classic one, as may be found in

Mitchell and Griffiths, 1980, and Marchuk, 1975. The theory related to operators (linear

ones, to be strict) may be found in classic books. It may be mentioned that fluid flow

conservation equations derive from integral conservation principles. It is after analytical

manipulation that differential equations are obtained.

Before continuing it is necessary to introduce some illustration of how the discrete

solution at a given point (i, n+1) in the integration domain (, D) may depend on the

surrounding points. The goal is, of course, advancing in time to t+t, noting that the

problem is time marching. The most elementary discretization of a regular integration

domain is shown in Figure 20.1.

Figure 20.1 – Elementary discretization of an integration domain (, D).

Figure 20.2, A-D, shows how the discrete solution at an advanced time point (i, n+1)

depends on neighboring points for the most common discretizations:

a) explicit, in which the solution depends on values at time level n.Δt;

b) fully implicit in which the solution is advanced simultaneously in all the points at

(n+1).Δt from n.Δt;

c) the time step centered implicit method in which the solution is advanced

simultaneously in all the points at (n+1).Δt from n.Δt involving all the points at

n.Δt,

d) a 3D time explicit approximation similar to the 1D case.

8

Figure 20.2 – A-D: Discrete domain of dependence of the solution at (i, n+1):

(A) Explicit, (B) Fully implicit, (C) Mid-time centered - Crank Nicholson, (D) 3D

explicit.

The implications of the use of the distinct types of discretization will be evident in the

following, associated with the form of the implied operators.

Let us assume that L is a linear differential operator relating a dependent variable u to the

space coordinate x and time t. The linearity of L does not pose an essential limitation, due

to the possibility of linearizing the problem. Considering a 1D problem is convenient for

simplicity.

Then, the differential problem may be formulated as follows:

𝜕𝑢

𝜕𝑡
 =  𝐿(𝑡, 𝑥,

𝜕𝑘

𝜕𝑥𝑘
)𝑢, 𝑘 = 1,𝐾 (20.1)

Expanding u in terms a Taylor series around t in terms of a time increment Δt, then:

A B

C D

9

𝑢(𝑡 + 𝛥t, x) = 𝑢(t,x) +
1

1!

𝜕𝑢

𝜕𝑡
𝛥𝑡 +

1

2!

𝜕2𝑢

𝜕𝑡2
+ 𝐻𝑂𝑇 (20.2)

where HOT means terms of higher-order in Δt. This is a two-level time-discrete

formulation, implying also that L is independent of t, a reasonable assumption for many

practical applications.

Now, equation (20.2) may be written in operator form as:

𝑢(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝(𝛥𝑡
𝜕

𝜕𝑡
)𝑢(𝑡, 𝑥) = 𝑒𝑥𝑝(𝛥𝑡 ⋅ 𝐿)𝑢(𝑡, 𝑥) (20.3)

Equation (20.3) opens the way to all the different approximations for two-level time

discretization. For example, a suitable operator pre-multiplication of this equation leads

to:

𝑒𝑥𝑝(−
𝛥𝑡

2
⋅ 𝐿)𝑢(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝(

𝛥𝑡

2
⋅ 𝐿)𝑢(𝑡, 𝑥) (20.4)

which is a time-centered (Crank-Nicholson) approximation.

The essential difference between the previous two equations consists in the level of

algebraic difficulty to obtain the solution for the time-marching at the advanced time level

𝑡 + 𝛥𝑡. In the case of equation (20.3), the advanced values may be obtained explicitly

from values at time level t, while in the case of the Crank-Nicholson approximation,

equation (20.4), a simultaneous set of equations (usually linear) must be solved. In the

first case, the approximation is explicit, while in the second case the approximation is

implicit.

A fully implicit approximation may be obtained again by pre-multiplication of equation

(20.3) in the form:

𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿)𝑢(𝑡 + 𝛥𝑡) = 𝑢(𝑡, 𝑥) (20.5)

Another important aspect of the formulation shown as equation (20.3), is that it allows

for considering problems in multidimensional space coordinates as a succession of 1D

problems. Suppose for the moment that the space operator L may be written as the sum

of three operators L1, L2, L3, each one depending on x, y, z. Then, for example, it may be

written that:

𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿1) 𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿2) 𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿3)𝑢(𝑡 + 𝛥𝑡) = 𝑢(𝑡, 𝑥) (20.6)

In the previous expressions, it has been assumed that operators commute. This equation

may be split by suitable definitions, in a sequence of 1D problems as follows:

𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿1)𝑢
∗ =  𝑢(𝑡, 𝑥)

𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿2)𝑢
∗∗ = 𝑢∗ (20.7)

10

𝑒𝑥𝑝(− 𝛥𝑡 ⋅ 𝐿3)𝑢(𝑡 + 𝛥𝑡) = 𝑢∗∗

This approach, of fully implicit type in time is known as the Dyakonov splitting technique

and this and many other similar have been used since the mid of the 60s. What is important

to understand is that intermediate values do not necessarily coincide with the time

interpolation of u at intermediate times. This subject will be resumed later when be

considering general types of operators.

20.1.1 Formulation of exact, discrete approximations (DA)

Now it becomes necessary to fix some ideas on the approximation of L. To conduct this task, the

approximations of Mitchell and Griffiths, 1980, to space derivatives are in order.

Considering the expansion:

𝑢(𝑥 ±
1

2
𝛥𝑥) = 𝑢(𝑥) ±

1

1!

𝜕𝑢

𝜕𝑥

𝛥𝑥

2
+

1

2!

𝜕2𝑢

𝜕𝑥2

𝛥𝑥2

4
+⋅⋅⋅ , (20.8)

and the definition of the centered space operator

𝛿[𝑢(𝑥)] =  𝑢(𝑥 +
1

2
𝛥𝑥) −  𝑢(𝑥 −

1

2
𝛥𝑥), (20.9)

it follows that:

𝜕

𝜕𝑥
=

2

𝛥𝑥
⋅ 𝑠𝑖𝑛ℎ

−1(
𝛿𝑥

2
)  = 

1

𝛥𝑥
(𝛿𝑥 + 𝐻𝑂𝑇) (20.10)

Then, considering that Δt, Δx are constant along the plane (t, x) and t=nΔt,

x = i Δx, equation (20.3) may be written in exact difference form as:

𝑢𝑖
𝑛+1  =  𝑒𝑥𝑝 [𝛥𝑡 ⋅ 𝐿 (𝑖 ⋅ 𝛥𝑥, 𝑛 ⋅ 𝛥𝑡,

2

𝛥𝑥
⋅ 𝑠𝑖𝑛ℎ

−1(
𝛿𝑥

2
), (

2

𝛥𝑥
⋅ 𝑠𝑖𝑛ℎ

−1(
𝛿𝑥

2
))

2

) ,⋅⋅⋅] 𝑢𝑖
𝑛

(20.11)

Please note that the power of an operator is understood as its iterative application. In

equation (20.1.5), 𝑢𝑖
𝑛+1 is the exact value of u at (𝑡 + 𝛥𝑡, 𝑥 +

𝛿𝑥

2
). All Finite-difference

equations come from the truncation of this expression and operator manipulations as

considered before.

20.1.2 Truncation of exact Difference Approximations (DA) and the equations really

solved. Local truncation error (TE). Consistency of DA.

11

The DA as presented are not useful for numerical calculations and truncated expressions

must be used. In doing this, the discrete values for the dependent variables and the discrete

form of the operators must be introduced.

In what follows it is assumed that there exists a smooth, continuous function v in the

integration domain and a discrete function U, which coincides with v in the discrete set

of points that constitute the “grid” or “mesh”. This grid, in the usual case of 1D, unsteady

TH problems, is a series of points along the x-axis, which repeat in a set of parallel lines

in the time axis. The separation of points does not need to be uniform. The previous

assumption allows series expansions of these discrete functions (sometimes, for

simplicity, nomenclature will be interchanged). Also, in what follows, the implementation

of analogs of initial conditions (IC) and boundary conditions (BC) will not be considered

explicitly.

The discrete version of the operator L will be denoted as Lh and will be applied to U, while

L will be applied to u as before. Boundary conditions will be denoted as B and its discrete

version as Bh.

The goal of the application of numerical methods is the computation of a set of unknown

values for U, which is a suitable approximation to those of u that is also unknown.

A significant difference between the original differential equation and the difference

equation is that equation (20.11) cannot be used in practical terms. It must be truncated.

This gives origin to the truncation error and to the equation that is really solving the

numerical scheme. This concept will be considered later in more detail.

To illustrate this aspect, a simple example should suffice.

The scalar linear advection equation is:

𝜕𝑢

𝜕𝑡
 +  𝐶 ⋅

𝜕𝑢

𝜕𝑥
 = 0 (20.12)

where C is the constant transport velocity.

If a simple explicit difference approximation is used for the time derivative and centered

approximations are used for the space derivative, the following expression results:

𝑈𝑖
𝑛+1 − 𝑈𝑖

𝑛

𝛥𝑡
= −𝐶 ⋅

𝑈𝑖+1
𝑛 − 𝑈𝑖−1

𝑛

𝛥𝑥
 ; 𝐶 > 0 (20.13)

The definition of Lh is easy. Expanding this expression, by considering the definition of

v before and replacing it by u (this explanation will be obviated from here on) it results:

𝜕𝑢

𝜕𝑡
 +

𝛥𝑡

2
 
𝜕2𝑢

𝜕𝑡2
+  𝐶 ⋅

𝜕𝑢

𝜕𝑥
 +

𝐶.𝛥𝑥2

6

𝜕3𝑢

𝜕𝑥3
 =  𝑂(𝛥𝑡2,  𝛥𝑥4) (20.14)

12

This equation is the differential equation that is solved using the above-mentioned

approximation. The additional terms appearing constitute, in terms of the nomenclature

of this chapter, the local truncation error of the discrete approximation.

To establish the conditions to assure that the computed values of U are a proper

representation of u at the grid points, some formal definitions are now possible and will

be introduced as follows.

CONSISTENCY: Let us consider a dependent variable that is sufficiently differentiable

in a domain D and its boundary R. If a proper norm of the truncation errors L - Lh, and B

- Bh tend to zero when the increments of the independent variables tend to zero in some

way, then the discrete scheme Lh, Bh is said consistent with the differential operators L, B

It may be observed that equation (20.13) above is consistent with the original equation.

STABILITY: Given a function U defined in all the points of a grid in D and its boundary

R, then, if it exists a finite quantity K such that in a proper norm, it is

‖𝑈‖ ≤ 𝐾{‖Lh(𝑈)‖ + ‖Bh(𝑈)‖}  (20.15)

for all the functions U defined in D+R, then the discrete scheme is said stable. Consistency

and Stability may be conditional.

CONVERGENCE: Given a function U defined in all the points P of a grid in D and its

boundary R, then, considering linear operators, if the discrete scheme is consistent and

stable, the discrete scheme is convergent, i.e.:

‖𝑢(P) − 𝑈(P)‖   ⇾ 0 (tends to zero) (20.16)

This is the equivalence theorem of Peter Lax that allows constructing discrete, convergent

solutions of a differential problem. Formal proofs of this theorem may be found in texts

dealing with numerical analysis, e.g. Marchuk, (1975).

20.1.3 The introduction of artificial viscosity

In this paragraph, the concept of numerical (or artificial) viscosity will be introduced. The

need to stabilize numerical solutions by artificial, numerical means was introduced by

Von Neumann and Richtmyer, (1950). Many papers in the 60s refer to this pioneering

contribution as its sole reference, thus stressing the originality and the importance of the

above paper. In dealing with the problem of shock waves, said Authors introduced a non-

physical, numerically dissipative term proportional to the gradients of the velocity, using

it at the zones of large gradients and setting it to zero at “normal” zones.

The linear, 1D scalar advection-diffusion equation is paradigmatic in showing the effects

of proper control of the truncation error of a discrete approximation. In coping with

13

truncation error, it must be remembered again that it is a necessary consequence of getting

useful working approximations to conservation equations. Truncation errors cannot be

avoided in real life. One of the more influential papers in the clarification of the effects

of truncation error was due to Hirt, Hirt, (1968). He introduced the concept that the

equation solved by the numerical scheme is the one obtained by adding the terms arising

from the truncation error up to the second order. The lowest order terms of Taylor´s

expansion must be the original differential equations. The remaining ones are truncation

errors. Numerical consistency forces these added terms to tend to zero when the

discretization intervals tend to zero in some way. Hirt showed how the added terms of

even order in x could lead to unphysical behavior, by assimilating these terms to the so-

called “artificial viscosity” or “numerical viscosity” because they were proportional to

some power of space and time intervals. It is now interesting to consider explicitly the

example given in Hirt, (1968).

The linear advection-diffusion equation is:

𝜕𝑢

𝜕𝑡
 +  𝐶 ⋅

𝜕𝑢

𝜕𝑥
 = 𝛼

𝜕2𝑢

𝜕𝑥2
 (20.17)

If centered approximations are used for the space derivatives, then:

𝜕𝑢

𝜕𝑡
 +

𝛥𝑡

2
 
𝜕2𝑢

𝜕𝑡2
+  𝐶 ⋅

𝜕𝑢

𝜕𝑥
 =  𝛼 

𝜕2𝑢

𝜕𝑥2
 +  𝑂(𝛥𝑡2,  𝛥𝑥2) (20.18)

This is a hyperbolic equation, instead of the original parabolic one. The analysis of its

domain of dependence and the need to keep a positive diffusion coefficient leads to the

conditions needed to keep the solution stable, namely:

𝛼  − 𝐶2 ⋅
𝛥𝑡

2
>  0

2𝛼 

𝛥𝑡
 ≤ (

𝛥𝑥

𝛥𝑡
)
2
 (20.19)

The most interesting result for this equation comes from considering =0 and using a

non-centered approximation for the space derivative. In this case:

𝑈𝑖
𝑛+1 − 𝑈𝑖

𝑛

𝛥𝑡
= −𝐶 ⋅

𝑈𝑖
𝑛 − 𝑈𝑖−1

𝑛

𝛥𝑥
 ; 𝐶 > 0 (20.20)

Following the same procedure as before, it may be found that:

𝜕𝑢

𝜕𝑡
 +  𝐶 ⋅

𝜕𝑢

𝜕𝑥
 =  

𝐶⋅𝛥𝑥

2
⋅ (1 −

𝐶𝛥𝑡

𝛥𝑥
) ⋅  

𝜕2𝑢

𝜕𝑥2  +  𝑂(𝛥𝑡2,  𝛥𝑥2) (20.21)

where:

 𝐶𝑂𝑈  =  
𝐶⋅𝛥𝑡

𝛥𝑥
 (20.22)

14

is the cell Courant number. As may be seen in the previous equation, the diffusion

coefficient comes directly from the discretization parameters and the advection velocity.

Keeping this coefficient positive implies keeping the cell Courant number less or equal

to unity. COU >1 implies that the fluid transverses more than a space interval (a computing

cell) in one time step interval. This is not allowed on physical grounds. Violating this

condition leads to growing oscillations (physically sound growing oscillations!). Hirt,

1968) analyzed the more important case of non-linear problems in the same way.

The explicit time, centered space approximation given by equation (20.20) constitutes the

“Forward time, upwind space” approximation to the scalar wave equation or, in short, the

FTUS method. This is the simplest way to construct solutions in CFD. It is the usual

approximation used in the codes to stabilize calculations or to regularize ill-posed models

like in industrial SYS-TH codes as will be discussed later, through the introduction of

controlled numerical diffusion. Many other, quite sophisticated methods have been

developed with this philosophy. The interested reader may consider the books by Laney,

(1998) and the two-volume edition by Fletcher, (1991). Adequate discretization permits

keeping low truncation error and allowing the computation of unstable flows.

The adequate treatment of truncation error has been shown to allow the computation of

solutions. It will be shown in what follows that this is a useful method to get linearized

forms of the non-linear governing equations, with controlled truncation error. Important

examples of this assertion may be found in Marchuk, (1975). In a practical case of direct

application to Nuclear Safety, the SETS (for Stability-Enhanced, Two-Step) method,

Fletcher, (1991), was developed to eliminate the COU limit restriction.

In what follows this will be exemplified, simply by showing how to use this concept to

linearize Burger´s type operators. Let:

𝜕𝑢

𝜕𝑡
+ 𝐿1(𝑢) + 𝑁(𝑢) = 0 (20.23)

be the equation under analysis, where L1 is a linear operator and N is a nonlinear operator.

Let us assume that N is restricted to the form:

𝑁(𝑢) = 𝐿2(𝑢) ⋅ 𝐴(𝑢) (20.24)

where L2(u) is linear in u and A is such that the algebraic problem resulting from the

discrete approximation of the previous equations is also linear.

Burger's equation is a useful example. In this case:

𝐴 ≡ 𝑢, 𝐿1 = −𝜀 ⋅
𝜕2

𝜕𝑥2 , 𝐿2 =
𝜕

𝜕𝑥
 (20.25)

A Crank-Nicholson approximation may be written as:

15

[𝐼 +
𝛥𝑡

2
𝐿1 +

𝛥𝑡

2
𝐴∗ ⋅ 𝐿2] 𝑢𝑛+1 = [𝐼 −

𝛥𝑡

2
𝐿1 −

𝛥𝑡

2
𝐴∗ ⋅ 𝐿2] 𝑢𝑛 (20.26)

where I is the identity operator and A* is an operator that is independent of time and a

suitable approximation to A to be defined in what follows.

Expanding this expression in a Taylor series around n, we get:

𝑢 + 𝛥𝑡
𝜕𝑢

𝜕𝑡
+

𝛥𝑡2

2

𝜕2𝑢

𝜕𝑡2
+

+
𝛥𝑡

2
𝐿1 +

𝛥𝑡

2
𝐴∗ ⋅ 𝐿2 + 𝛥𝑡 ⋅

𝛥𝑡

2
⋅ [

𝜕𝐿1

𝜕𝑡
+ 𝐴∗ ⋅

𝜕𝐿2

𝜕𝑡
] +

−𝑢 +
𝛥𝑡

2
𝐿1 +

𝛥𝑡

2
𝐴∗ ⋅ 𝐿2 = 𝑂(𝛥𝑡3) (20.27)

To obtain an estimation for 𝐴∗we now ask: under which conditions is this equation an

"exact", i.e., an O(t2, x2) approximation to the solution of the original equation? The

answer comes from subtracting the previous equation from the original one:

𝜕𝑢

𝜕𝑡
+

𝛥𝑡

2

𝜕2𝑢

𝜕𝑡2
+ 𝐿1 + 𝐴∗ ⋅ 𝐿2 +

𝛥𝑡

2
⋅ [

𝜕𝐿1

𝜕𝑡
+ 𝐴∗ ⋅

𝜕𝐿2

𝜕𝑡
] =  𝑂(𝛥𝑡2) (20.28)

Derivation of the original differential equation and replacement leads to:

𝐴∗ ⋅ 𝐿2 (𝑢𝑛+1
2⁄) = 𝐴 (𝑢𝑛+1

2⁄) ⋅ 𝐿2 (𝑢𝑛+1
2⁄) (20.29)

Then,

𝐴∗ ≡ 𝐴 (𝑢𝑛+1
2⁄) (20.30)

which is the O(2,2) expression searched. The numerical approximation to the

intermediate time step may be obtained in different linear ways. Because of the CN

formulation, terms involving added diffusion terms do not arise. If 𝐴∗ is evaluated as

shown, then, the technique coincides with a predictor-corrector scheme based on the

evaluation of "non-linear" coefficients evaluated at t=nt+t/2. This result is well

known. As may be seen from the above derivation, truncation error analysis was used

again in a convenient way.

20.1.4 Phase error in the solution of DA

It is important to point out that there is more to consider than a diffusive truncation error…

In the previous paragraph, the order of some discrete approximations has been discussed.

There is another aspect that deserves attention when the coupling and type of dependent

variables perturbations govern the dynamics of the solution. Depending on the type of

16

perturbation, the wave velocity of a given numerical scheme must be considered. The

discrete wave velocity is the velocity that a wave packet moves with, compared to the

fluid velocity. It is well known that the degree of delay of density (or temperature)

perturbations concerning fluid velocity is key to the appearance of instabilities. One of

the most important references in this subject is the review by Trefethen, (1982), who

showed how this property of a numerical scheme affects the transport velocity of a signal

as a function of wavenumber and the discrete (finite-differences) approximation. Figures

20.3 and 20.4 consider the linear advection of a scalar with two different waveforms,

namely a wave packet and a smooth Gaussian. In both cases, the transport velocity is C =

1, the space interval is Δx = 1/160, the Courant number is COU = 0.4 and the total time of

integration is t = 2. The numerical scheme is LEAPFROG, defined by the simplest

numerical scheme of order O(2,2), i.e.

𝑈𝑖
𝑛+1−𝑈𝑖

𝑛−1

2𝛥𝑡
= −𝐶

𝑈𝑖+1
𝑛 −𝑈𝑖−1

𝑛

2𝛥𝑥
 (20.31)

The analysis for this behavior is simple and comes from considering that numerical

schemes transport wave packets composed of waves of different frequencies and

wavelengths with different velocities. The speed of propagation of the waves is dependent

on ., where  is the wavenumber. Define  as the angular wave frequency. If  is the

wavelength, the resolution is defined as m=/x. Additionally, by definition:  = 2 / m.

Defining the group velocity as:

 𝐶𝐺 =
𝑑𝜔

𝑑𝜅
 (20.32)

and replacing each term of the terms in the difference equation by 𝑒𝑥𝑝(𝜔𝑡 − 𝜅𝑥), e.g.:

𝑈𝑖−1
𝑛+1 = 𝑒𝑗 [𝜅⋅(𝑥−𝛥𝑥) − 𝜔⋅(𝑡+𝛥𝑡)] (20.35)

then:

𝐶𝐺

𝐶
 =  1 −

1−𝐶𝑜
2

2
⋅ 𝜃2 (20.36)

Using this equation and the above-mentioned discretization, the waves should be

transported from x=0.5 to x=2.5. As may be seen in Figure 20.3, this is fairly confirmed

for a smooth Gaussian wave perturbation. When the same signal is modulated by a sine

wave having wave number 125.7 and a wave resolution of 8 points per wavelength, the

group velocity is nearly 0.74. This results in the wave packet transport from x = 0.5 to x

= 2, Figure 20.4. This property may be also verified in multidimensional systems.

17

The above means that there is more than simply considering diffusive truncation error in

assessing the quality of a solution. A simple conclusion is that the transport of the wave

packet is correct, but its velocity (the group velocity) lags the phase velocity (that is also

different from the fluid velocity) by 25%. It may be concluded that, depending on the

type of perturbations, there is a possibility of getting unexpected results about the

computation of the onset of instabilities of flows.

Figure 20.3 – The transport of a smooth Gaussian wave under LEAPFROG,

Trefethen, (1982).

Figure 20.4 –The transport of a wave packet under LEAPFROG, Trefethen, (1982).

LEAPFROG SCHEME

 U=1, C=0.4, 0<t<2, Cg=0.74

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X

C

LEAPFROG SCHEME

 U=1, C=0.4, Wave-No=125.7, Res=8, 0<t<2, Cg=0.74

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X

C

18

On the other hand, the second case imposes further considerations when choosing a norm

to measure the error of a numerical solution.

20.1.5 The meaning and control of numerical, non-physical solution oscillations

In many cases of practical significance, the computed solution is stable but shows

oscillations. Not necessarily, this is due to some intrinsic (physical) properties of the

solution but, apart from being unexpected, these oscillations are spurious. The 1-D, linear,

steady-state, advection-diffusion equation solution is another paradigmatic example of

this. This equation may be written as:

𝑃𝑒 ⋅  
du

dx
  −  

𝑑2𝑢

dx2
= 0

 (20.37)

𝑢(0) = 0 𝑢(1) = 1

where Pe is the Peclet number, defined as Pe = C.L/, where C is the advection velocity,

L is the length of the 1D domain, and  is the mass diffusion coefficient. This equation

is the so-called “tough problem”. Figure 20.5 shows the solution using centered differ-

ences for different Peclet numbers. Solid points show the exact solution. Hollow points

show the exact, numerical, stable solution with non-growing oscillations. The oscillations

(wiggles) are due to the non-proper boundary layer resolution at high Peclet numbers.

Asymptotic analysis, Ferreri, 1985, or, more simply, the introduction of upwinding cuts

the problem.

Figure 20.5 – Spurious oscillations in the solution of the 1D, linear, steady-state,

advection-diffusion equation and their elimination by asymptotic analysis, Ferreri,

(1985).

19

The existence of spurious oscillations in the solution of conservation equations may be

the consequence of the non-appropriate resolution of the boundary layer behavior of the

solution, like in this case. Then, suppressing the oscillations may be non-conservative or,

equivalently, allow computing a solution not showing all the important aspects of the

physics. Work done in the 80s served to clarify these aspects. P. Gresho at the LLNL,

Gresho and Lee, (1981), contributed significantly to this subject. However, an earlier dis-

cussion on the effects of discretization may be also found in Hirt, (1968).

To conclude this paragraph, it may be stated that non-growing oscillations in a computed

solution may be an indication of non-appropriate discretization. Forcing their elimination

may be a cause of losing information on the physics and at the same time, of making

possible the calculation.

20.2 The solution of Parabolic PDE

Considering time-dependent, diffusive PDE leads to the field of parabolic equations. In

earlier paragraphs, we have discussed them (i.e., eq. 20.3). Depending on the numerical

scheme and the linearity of the equations, the discrete expressions may lead to more

simple or more complicated numerical algorithms to obtain the solutions.

This applies to single or two-phase TH. In the second case, the simultaneous conservation

PDEs impose considering various levels of implicitness. In his series of lectures on

simulation, one of the pioneers, John Mahaffy at PSU, Mahaffy, 1982, established the

coupling of different conservation equations as the key to different degrees of implicitness

for practical applications. The fully explicit method consists of solving the DAs for density

and velocity calculating the advanced time values in terms of old values only. This leads

to simple numerical algorithms at the cost of imposing severe time step limitations due to

the Courant limit described before. The semi-implicit method consists of advancing the

density calculation in explicit form and the velocity by implicit methods. This is a more

complicated method, but it was used in most SYST-TH codes for safety evaluations. The

obvious generalization is considering a fully implicit method that leads to a coupled set of

non-linear equations that are usually free of stability problems. It is important to keep the

simplicity of the numerics and, at the same time, have fewer stability restrictions in the

time step. This aspect was considered in the nearly implicit DA. The introduction of

partial steps in the computation of advanced time variables was the solution proposed in

SYS-TH codes. John Mahaffy introduced the stability-enhancing two-step method as the

SETS Method, Mahaffy, (1982), which consists in the recalculation of the time-advanced

variables adding a stabilizing step to the nearly implicit approximations. This procedure

applies to all the variables (mass, energy, scalars, and momentum), resembling a fully

implicit approximation with a reduced computational effort.

Before continuing, it is useful to introduce a here deeper discussion of the equation

(20.20). The up-wind derivative for advection terms was presented in its simplest form

and it is a particular form of the so-called donor-cell approximation of advection terms in

conservation equation.

20

Figure 20.6 shows a control volume for the computation of the advective term in 1D flow.

Figure 20.6 – Control volumes for the computation of advective terms

in 1D flow.

The cross-section of the 1D problem is considered uniform. In the case of scalars, like

density, concentration, and energy/temperature, they are centered at cell i. For

convenience, velocities are defined at cell boundaries. The control volume for velocities

is displaced x/2.

In a mixed classic style of the FORTRAN codes of the 70’s, this automatic way of

introducing artificial, numerical viscosity, now for the momentum equation is written as:

FUX = [(U(I)+U(l+1)) * (U(I)+U(I+1)) + *ABS(U(I)+U(I+1)) * (U(l) -U(I+1))

 - (U(I-1)+U(I)) * (U(I-1)+U(I)) - *ABS(U(I-1) + U(I)) * (U(I-1)-U(I))] / (4*x)

(20.38)

where FUX represents
𝜕𝑈2

𝜕𝑥
 in the momentum equation.  represents a coefficient that

allows for introducing a variable degree of upwind differencing. =0 implies a centered

approximation, while =1 imposes full up-winding or donor cell approximation. It may

be verified that this approximation holds for positive or negative values of the velocity at

the control volumes faces. When needed, simple averages of these velocities may be used.

The result of imposing =1 is an added artificial viscosity ABS(U).t/x. Similar

expressions hold for the other terms.

The fractional step method to be introduced in what follows is a formal way to consider

the last DA solutions, linearizing non-linear sets of equations.

i-1/2 i+1/2

i-1 i i+1

 Ci Ci-1 Ci+1

Ui Ui-1

21

20.2.1 The approximation of the solution of time-dependent problems, step by step

splitting

It is useful to reconsider equation (20.3) that is written here in a simpler form.

𝑢(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝(𝛥𝑡 ⋅ 𝐿)𝑢(𝑡, 𝑥) (20.39)

where now it is assumed that L does not depend on time and is a linear operator. A way

to deal with particular forms of non-linearities was introduced before. In terms of the

analysis, Marchuk, (1975), this was a predictor-corrector method. In the case of

considering a non-homogeneous equation, the procedure is similar. The splitting up

method will be considered, as delineated in Marchuk, (1975), to guide the analysis.

Assuming that L may be expressed as the sum of several simple, linear, and time-

independent operators as

𝐿 = ∑𝐿𝑠

𝑚

𝑠=1

 (20.40)

The following discrete procedure is introduced, consistent with the definition used in

section 20.1:

𝑈
𝑖

𝑛+
1
𝑚 − 𝑈𝑖

𝑛

𝛥𝑡
= 𝐿1

𝑛 (𝑈
𝑖

𝑛+
1
𝑚) ;

𝑈𝑖

𝑛+1 − 𝑈𝑖
𝑛+(𝑚−1)/𝑚

𝛥𝑡
= 𝐿𝑚

𝑛 (𝑈𝑖
𝑛+1) .

(20.41)

Considering m = 3 leads to the Dyakonov splitting for tridimensional problems that is a

first-order time approximation. If equation (20.39) were non-homogeneous, the previous

scheme only changes to consider an independent term in the last equation evaluated at

time t. The stability of this scheme is unconditional, and the proof may be found in

Mitchell and Griffiths, (1980). In this book, generalizations to consider quasi-linear

problems in which L depends on time and the dependent variable may also be found. The

basic concept is considering as many intermediate steps as necessary to evaluate the non-

linearities to advance from time t = nΔt to t = (n+1)Δt. In section 20.1, the simplest case

of a quasi-linear equation linearization was introduced.

The algorithmic details and the computational cost will be considered in section 20.3.5.7.

To fix ideas, it is useful to recall the original formulation of the SETS Method, Mahaffy,

(1982). This method has been used to implement the space derivatives in one of the major

TH codes, the TRACE code.

22

20.2.2 Explicit and implicit approximations in one and multiple space dimensions,

Alternating Direction Implicit (ADI) methods

In multiple space dimensions, equation (20.41) may remain the same formally but the

computational effort is hidden in the multiple steps. To fix ideas let us consider two space

dimensions and a simple space operator like a Laplacian. Similarly to equation (20.41), it

is possible to consider an explicit method, allowing to advance in the time applying space

boundary conditions, according to the procedure suggested in Figure 20.2 (D), applying

boundary conditions along B before advancing from time t=nΔt to t=(n+1)Δt. The stability

of such a procedure imposes limitations in the selection of time steps, Mitchell and

Griffiths, (1980); Marchuk, (1975). To avoid these limitations, one common procedure

consists in integrating along time using implicit methods. However, the cost of solving

the simultaneous systems of equations may be very high because of the large matrices

arriving from the multidimensional discretization. To avoid this problem, operator

splitting, like, equations (20.41) is in order. The Dyakonov splitting considered before is

a possible scheme. However, alternative splitting procedures become popular in the

fifties-sixties. They were introduced by Peaceman and Rachford, (1955), Douglas and

Rachford, (1956), and some other authors. The original applications dealt with the

solution of elliptic equations coming from fluid flows in porous media by pseudo transient

techniques. To illustrate these techniques, similarly to equation (20.39), it is

𝑢(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝(𝛥𝑡 ⋅ 𝐿)𝑢(𝑡, 𝑥) = 𝑒𝑥𝑝(𝛥𝑡 ⋅ (𝐿𝑥 + 𝐿𝑦))𝑢(𝑡, 𝑥) (20.42)

that may be expanded as

𝑢(𝑡 + 𝛥𝑡) = 𝑒𝑥𝑝(𝛥𝑡 ⋅ 𝐿𝑥). 𝑒𝑥𝑝(𝛥𝑡 ⋅ 𝐿𝑦)𝑢(𝑡, 𝑥) (20.43)

Considering discrete values, it is

(1 −
𝛥𝑡

2𝛥𝑥
 2 . 𝑥

 2)(1 −
𝛥𝑡

2𝛥𝑦
 2 . 𝑦

 2)𝑈𝑖
𝑛+1 = (1 +

𝛥𝑡

2𝛥𝑥
 2 . 𝑥

 2)(1 +
𝛥𝑡

2𝛥𝑦
 2 . 𝑦

 2)𝑈𝑖
𝑛 (20.44)

Introducing an intermediate value 𝑈𝑖
𝑛+1 ∗

(1 −
𝛥𝑡

2𝛥𝑥
 2
. 𝑥

 2)𝑈𝑖
𝑛+1 ∗ = (1 +

𝛥𝑡

2𝛥𝑦
 2
. 𝑦

 2)𝑈𝑖
𝑛 (20.45)

and

(1 −
𝛥𝑡

2𝛥𝑦
 2

. 𝑦
 2)𝑈𝑖

𝑛+1 = (1 +
𝛥𝑡

2𝛥𝑥
 2

. 𝑥
 2))𝑈𝑖

𝑛+1∗ (20.46)

This is the Peaceman-Rachford ADI Method. The application of boundary conditions has

special aspects in irregular boundaries and a throughout discussion may be found in Mitchell

and Griffiths, (1980). Similarly, other expressions are available. In the Authors´ experience,

the use of the Dyakonov formulation is simpler.

23

20.3 The solution of Elliptic PDE

All the discretization methods for PDE lead to a linear system of equations that must be

solved. If the problem is nonlinear then, the solution can be solved iteratively, solving a

series of linear system of equations. So, at the very basis of all computer codes for the

solution of PDE, there must be a computer routine to solve linear systems. Moreover,

many times this is the step that represents the largest consumption of computing time

We discuss below the solution of the linear systems arising from the numerical

discretization of elliptic PDE. There are already very good commercial and open-source

libraries for this task. However, it is very important for a user of these libraries to

understand the different algorithms involved, to choose the most appropriate for its needs.

Many TH computational codes allow for the choice of the solver of system equations and

some of the associated parameters (tolerances, maximum number of iterations, type of

solver).

20.3.1 Characteristics of the linear system

For simplicity, the solution of the Poisson equation

𝑘𝛥𝜙 = −𝑄 (20.47)

on a rectangular domain 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦], will be studied. Dirichlet boundary

conditions

𝜙 = 𝜙 (20.48)

at the boundary of Ω are assumed, 𝑘 is the thermal conductivity (units [𝑊 𝑚⁄ .𝐾]), and

𝑄 is a heat source term (units [𝑊 𝑚3⁄]). The problem is discretized with 𝐿 steps in the 𝑥

direction and 𝑀 steps in the 𝑦 direction, as shown in Figure 20.7.

Figure 20.7 – Rectangular domain for the Poisson problem.

Let 𝜙𝑙,𝑚be the approximate value for 𝜙 at the node (𝑥𝑙, 𝑦𝑚), then by finite difference

approximation of equation (1), the following equation is obtained

24

𝑘 (
𝜙𝑙+1,𝑚 − 2𝜙𝑙,𝑚 + 𝜙𝑙−1,𝑚

𝛥𝑥2
+

𝜙𝑙,𝑚+1 − 2𝜙𝑙,𝑚 + 𝜙𝑙,𝑚−1

𝛥𝑦2
) = −𝑄𝑙,𝑚 (20.49)

This represents one linear equation for each interior node (1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝑀), so

that there are 𝑁 = (𝐿 − 1) × (𝑀 − 1) equations. On the other hand, there is one unknown

for each interior node since the boundary nodes have an imposed value, due to the

Dirichlet boundary condition. The system of equations can be written as

𝐊𝛟 = 𝐟 (20.50)

where 𝐊 is the square matrix of the system, of size 𝑁 × 𝑁, and 𝛟 and 𝐟 the vector of

unknowns of length and right-hand side respectively, both of length 𝑁. For simplicity, it

will be assumed that 𝐿1 = 𝐿2, and 𝐿 = 𝑀, so that 𝛥𝑥 = 𝛥𝑦, and the matrix system can be

expressed in block matrix form as

𝐊 =
𝑘

Δ𝑥2

[

 𝐊 −𝐈 0 0 ⋯ ⋯ ⋯ ⋯

−𝐈 𝐊 −𝐈 0 ⋯ ⋯ ⋯ ⋯

0 −𝐈 𝐊 −𝐈 0 ⋯ ⋯ ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 0 0 0 0 0 −𝐈 𝐊]

 (20.51)

where 𝟎, 𝐈, and 𝐊 are a square matrix of size 𝑀 − 1. 𝟎 and 𝐈 are the null and identity

matrices, respectively, and 𝐊 is the following matrix,

 𝐊 =

[

4 −1 0 0 ⋯ ⋯ ⋯ ⋯
−1 4 −1 0 ⋯ ⋯ ⋯ ⋯
0 −1 4 −1 0 ⋯ ⋯ ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 0 0 0 0 −1 4]

 (20.52)

The vector of unknowns 𝛟 is the collection of unknowns traversing the internal nodes of

the grid by columns,

 𝛟 =

[

𝜙11

𝜙12

𝜙13

⋮
𝜙21

𝜙22

𝜙23

⋮
𝜙𝐿−1,1

𝜙𝐿−1,2

𝜙𝐿−1,3

⋮
𝜙𝐿−1,𝐿−1]

 (20.53)

as shown in Figure 20.8. The unknown for node (𝑙,𝑚) is located at position
(𝑙 − 1)(𝐿 − 1) + 𝑚 in the 𝛟 vector.

25

Figure 20.8 – Numbering of unknowns for the internal nodes

Consider an internal node at position (𝑙,𝑚). The equation for this node (see equation 0)

involves the unknown at the node (𝑙,𝑚) itself, and the four neighbors (𝑙 ± 1,𝑚 ± 1) (see

Figure 20.9). The pattern of nodes whose unknowns are linked with a specific node is

called the stencil of the operator. In this case, the stencil involves five nodes, and it is

called the 5-node stencil operator for the Poisson equation. Noting that the unknown for

node (𝑙,𝑚) is located at position 𝑗 = (𝑙 − 1)(𝐿 − 1) + 𝑚, the five nonzero coefficients

in that row are located at columns 𝑗 − 𝐿 − 1, 𝑗 − 1, 𝑗, 𝑗 + 1, 𝑗 + 𝐿 − 1

Figure 20.9 – Stencil of the operator.

This means that 𝐊 is a band matrix i.e., a matrix such that the null coefficients are

concentrated in a band near the diagonal, specifically

𝐾𝑖𝑗 = 0, for |𝑖 − 𝑗| > 𝑎 (20.54)

26

where 𝑎 is the bandwidth of the matrix. In this case, the bandwidth is 𝑎 = 𝑀, (remember

that 𝐿 = 𝑀 is assumed) so that the ratio of the bandwidth to the size of the matrix is very

low, 𝑎/𝑁 = 1/𝑀, Fig. 20.10. It will be shown that this band characteristic of the matrix

has a substantial impact on the computational effort needed to solve the linear system of

equations.

Figure 20.10 – Band matrix and definition of bandwidth.

20.3.2 Memory and computational time requirements for the solution of the linear

system

Consider the solution of the linear system of equations (20.50), considering that the matrix

has size 𝑁 × 𝑁, and bandwidth 𝑎. It is easy to see that during LU or Cholesky

factorization, the coefficients outside of the band do not fill, i.e., the coefficients of the

factored matrices 𝐋, 𝐔 are also null for |𝑖 − 𝑗| > 𝑎. That means that the computer memory

needed to store the factored matrices is ~2𝑁𝑎. On the other hand, if the matrix were

stored as dense (i.e., if all coefficients were stored), then the required computer memory

would be 𝑁2. This means that there is a ratio,

𝑚𝑒𝑚𝑜𝑟𝑦(𝑏𝑎𝑛𝑑)

𝑚𝑒𝑚𝑜𝑟𝑦(𝑑𝑒𝑛𝑠𝑒)
= 2𝑁𝑎/𝑁2 = 2𝑎/𝑁~2𝑀/𝑀2 = 2/𝑀 ≪ 1, (20.55)

between the memory required for storage as a band versus dense. This ratio becomes very

low as the number of steps per side 𝑀 increases.

Now consider the computing time, i.e., the number of floating-point operations needed to

factor the matrix. For simplicity, we will assume Gauss elimination. Consider firstly

factorization as a dense matrix. The algorithm proceeds first eliminating the 𝑎21

27

coefficient by doing a row operation between the second and the first row. The number

of operations needed to do this row operation is 𝑐𝑁 where 𝑐 is a constant, denoting the

number of operations needed to eliminate a single entry in the row. This operation must

be done for all rows 𝑗 = 2,⋯ ,𝑁, i.e., for 𝑁 − 1 rows, and the number of operations is
(𝑁 − 1)𝑁. Then, the coefficients in column 2, rows 3 to 𝑁 must be eliminated. That

amounts to 𝑁 − 2 row operations of length 𝑁 − 1, and so on. The total number of

operations is then,

𝑁𝑜𝑝𝑠 = 𝑐 ∑(𝑁 − 1)𝑁

𝑁−1

𝑗=1

(20.56)

where 𝑐 is the number of operations needed to eliminate one coefficient. The summation

can be computed in closed form and it results in

𝑁𝑜𝑝𝑠 = 𝑐
𝑁3

3
+ 𝑂(𝑁2) (20.57)

Now, consider a banded matrix with bandwidth 𝑎. The number of operations to be done

for the elimination of the coefficients is proportional to the number of non-null

coefficients in the row. There are just 𝑎 + 1 non-null coefficients in the first row, 𝑎 + 2

in the second row, and so on until row 𝑎 + 1, where there are 2𝑎 + 1 non-null

coefficients. In fact, due to the banded character of 𝐾 all the rows have at most 2𝑎 + 1

non-null coefficients. For the first column, the coefficients must be eliminated from row

2 up to row 𝑎 + 1, i.e., a total of 𝑎 rows and each one has at most 2𝑎 + 1 non-null

coefficients, i.e., c𝑎(𝑎 + 1) operations. For the second column, there are 𝑎 + 2 rows with

at most 2𝑎 + 1 non-null coefficients. In general, it can be shown that there are for each

column at most 2𝑎 rows with 2𝑎 + 1 non-null coefficients each, so the total number of

operations is at most 𝑁2𝑎(2𝑎 + 1)

𝑁𝑜𝑝𝑠(banded) = 4𝑐𝑎2𝑁~𝑂(𝑁2)~𝑂(𝑀4) (20.58)

The ratio between banded and dense is, then

𝑁𝑜𝑝𝑠(banded)

𝑁𝑜𝑝𝑠(dense)
=

4𝑐𝑎2𝑁

𝑐𝑁3 3⁄
= 12(𝑎 𝑁⁄)2 (20.59)

So, for instance, for a mesh of 𝐿 = 𝑀 = 200 steps in each direction, the total number of

unknowns is 𝑁 = (𝐿 − 1)(𝑀 − 1) ~ 𝐿𝑀 = 40.000, the bandwidth is 𝑎 = 𝑀 and the

ratio of operation count between banded and dense is,

𝑁𝑜𝑝𝑠(banded)

𝑁𝑜𝑝𝑠(dense)
~

2

𝑀2
= 3𝑒 − 4. (20.60)

The huge difference between the computing times makes the use of banded matrices (or

similar) almost mandatory.

Regarding the memory storage for the full matrix, the number of coefficients to be stored

are

28

𝑁𝑚𝑒𝑚(dense) = 𝑁2 (20.61)

whereas for the banded matrix the storage is

𝑁𝑚𝑒𝑚(banded) = 2𝑎𝑁~𝑂(𝑁1.5) (20.62)

so, the ratio is

𝑁𝑚𝑒𝑚(banded)

𝑁𝑚𝑒𝑚(dense)
~

2𝑎𝑁

𝑁2
= 2

𝑎

𝑁
=

2

𝑀
(20.63)

As a conclusion, it is evident that there is a large gain in using banded versus dense

matrices, being the ratio 𝑂(𝑀−1) for the storage and 𝑂(𝑀−2) for the computing time.

For general non-structured grids, the concept of a banded matrix is generalized as a sparse

matrix, but most of the concepts still apply, i.e., sparse matrix methods are much more

efficient in terms of storage and computing time, than methods that do not consider that

pattern, i.e., methods for dense matrices.

20.3.3 Basic concepts on iterative methods

Even if exploiting the banded pattern of the matrix greatly reduces the computational

requirements, both in memory storage and computing time, they still grow at a very high

rate, 𝑂(𝑁1.5) and 𝑂(𝑁2) respectively, where 𝑁 is the total number of unknowns. This

means that if the user wants to refine the mesh by a factor of 2x in each dimension, then

the number of unknowns grows by a factor of 4x, the required memory by a factor of 8x,

and the computing time by 16x. Moreover, all the factorization methods are very difficult

to implement in parallel, i.e., they cannot use efficiently the computational power of

modern multicore processors, nor of HPC (for High Performance Computing) equipment.

A distinctive feature of the factorization methods is that they are “direct”, i.e., they solve

the linear system to machine precision in a finite number of steps. Iterative methods,

instead, produce a sequence of unknown vectors that converge in some norm to the

solution.

20.3.4 Stationary iterative methods

Let

𝐴𝑥 = 𝑏, (20.64)

be the system to be solved, with 𝐴 ∈ ℝ𝑁×𝑁, the matrix of coefficients and 𝑥, 𝑏 ∈ ℝ𝑁 the

solution and right-hand side, respectively. One of the simplest iterative methods is the

Richardson method,

𝑥𝑘+1 = 𝑥𝑘 + 𝜔𝑟𝑘, (20.65)

where

𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 = −𝐴(𝑥𝑘 − 𝑥) = −𝐴 Δ𝑥𝑘, (20.66)

29

is the residual for the iteration vector 𝑥𝑘, and 𝜔 is a relaxation parameter, to be

determined, and Δ𝑥𝑘 = 𝑥𝑘 − 𝑥 is the error vector at iteration 𝑘. Subtracting 𝑥 from both

sides of equation (20.65), a recursive equation for the error vector can be obtained,

Δ𝑥𝑘+1 = 𝑀Δ𝑥𝑘 (20.67)

where

𝑀 = 𝐼 −  𝜔𝐴  (20.68)

is the amplification matrix, i.e., the error vector is amplified by this matrix at each

iteration. Of course, the idea is not to amplify the error, but rather to dampen it. Methods

that can be represented as in equation (20.67) with a given constant matrix 𝑀 are called

stationary. This means that the next iteration vector 𝑥𝑘+1 depends only on the previous

vector 𝑥𝑘, not on the previous history 𝑥𝑘−1, 𝑥𝑘−2, …

Note that if the dimension 𝑁 of the problem were 1, then 𝑀 would be a scalar, and the

requirement for convergence would be simply

|𝑀| = |1 − ω𝐴| < 1. (20.69)

As |𝑀| gets lower, the error at each iteration is reduced more, and the convergence of the

algorithm is faster. In this case, the value of ω = 1/𝐴, can be chosen and then the rate of

convergence would be ideal, i.e., the error is reduced to zero in just one iteration.

For 𝑁 > 1 the requirement for convergence is much the same but applied to the

eigenvalues of 𝐴; i.e., the algorithm converges if all the amplification factors 𝑚𝑗 are

smaller than one in magnitude

|𝑚𝑗| = |1 − 𝜔𝜆𝑗| < 1, (20.70)

for all the eigenvalues λ𝑗 of 𝐴. For the Poisson equation considered, the matrix 𝐴 is

symmetric and positive definite, and so there are 𝑁 positive eigenvalues {λj}𝑗=1
𝑁 , which

will be assumed ordered, i.e.,

λ𝑚𝑎𝑥 = λ1 ≥ λ2 ⋯ ≥ λ𝑁 = λmin > 0 (20.71)

To converge, all the amplification factors must satisfy eq. (20.67). For each eigenvalue,

the amplification factor is a linear function starting with mj = 1 at ω = 0, see Figure

20.11 and decreasing its algebraic value with increasing ω. So that for ω small all the

amplification factors are |𝑚𝑗| < 1 and the iteration converges. For ω = 1/λ𝑚𝑎𝑥 the

amplification factor 𝑚1 gets null. For larger values 𝑚1becomes negative and starts

increasing its value, eventually becoming 𝑚1 = −1 at

𝜔𝑐𝑟𝑖𝑡 = 2/λ𝑚𝑎𝑥 (20.72)

For values of ω > ω𝑐𝑟𝑖𝑡 the amplification factor is 𝑚1 < −1, i.e., |𝑚1| > 1, and the

iteration diverges. So, ω𝑐𝑟𝑖𝑡 is the critical value beyond which iteration diverges.

30

Figure 20.11 – Amplification factors for all eigenvalues as a function of 𝛚.

For small ω the convergence is given by the largest amplification factor 𝑚𝑁

corresponding to λ𝑚𝑖𝑛 (segment A-B in Figure 20.11) and decreases from A to B. For

larger ω the convergence is given by the largest amplification factor 𝑚1corresponding to

λ𝑚𝑎𝑥 (segment C-D in Figure 20.11), increases from C to D. So, the minimum

amplification is obtained at the relaxation factor ω𝑜𝑝𝑡, where the convergence rate

switches from B to C, i.e.

1 − ω𝑜𝑝𝑡λ𝑚𝑎𝑥 = −(1 − ω𝑜𝑝𝑡λ𝑚𝑖𝑛) (20.73)

ωopt =
2

λmin + λmax
  (20.74)

and the optimal convergence rate is

|𝑚opt| = |1 − ω𝑜𝑝𝑡λ𝑚𝑎𝑥| = |1 −
2λ𝑚𝑎𝑥

λ𝑚𝑖𝑛 + λ𝑚𝑎𝑥
| (20.75)

|𝑚opt| =
λmax − λmin

λmax + λmin
=

1 − κ−1

1 + κ−1
(20.76)

where

𝜅 =
λmax

λmin
≥ 1 (20.77)

is the condition number of the matrix 𝐴.

In many cases, the condition number is very high, κ ≫ 1, and then the amplification factor

is very close to one. For κ ≫ 1 the amplification factor can be approximated as

|𝑚opt| = 1 − 2κ−1 (20.78)

31

The convergence of the iteration is controlled by |𝑚opt|, i.e., the error is multiplied at

each iteration by a factor |mopt|, so that after 𝑛 iterations the residual is reduced by a

factor

‖Δ𝑥𝑛‖ = |𝑚𝑜𝑝𝑡|
𝑛
‖Δ𝑥0‖ (20.79)

That means that the number of iterations needed to reduce the error by a factor of 𝜀 is

𝑛𝑖𝑡𝑒𝑟 =
log(𝜀−1)

log(|𝑚𝑜𝑝𝑡|)
≅

𝜅 𝑙𝑜𝑔(𝜀−1)

2
(20.80)

The number of operations for the solution with the iterative method is the cost of the

iteration times the number of iterations needed. In this case, the cost of the iteration is,

see equations (20.65) and (20.66), a matrix-vector product operation 𝐴𝑥 and a few vector

(sum and scale) operations. All of them are 𝑂(𝑁), so the total number of operations for

the solution of the linear system is

𝑁𝑜𝑝𝑠(Richardson) ~ 𝑁 𝜅 𝑙𝑜𝑔(𝜀−1) (20.81)

Firstly, the computing time is proportional to 𝑙𝑜𝑔(𝜀−1), i.e., to the number of orders of

magnitude that the user wants to reduce the error. Many bounds on the convergence of

iterative algorithms behave like that. Also, the computing time is proportional to the

condition number of the matrix 𝜅. Many other methods converge at a rate that depends

on 𝜅, for instance, it will be shown that the rate of convergence of the Conjugate Gradient

Method is proportional to √𝜅.

The condition number grows with the refinement, and it depends on the operator, the

discretization scheme, and the type of grid. For the Poisson equation described above, the

condition number can be estimated as

κ = 𝑂(𝑀2) (20.82)

i.e., quadratic on the number of steps in each spatial direction. Replacing in eq. (20.74),

the following estimate is obtained

𝑁𝑜𝑝𝑠(Richardson)~𝑁2 𝑙𝑜𝑔(𝜀−1) (20.83)

Then, it is evident that Richardson has a computational time that is like the banded version

of the direct method. Of course, there is a crucial difference between them. The direct

method uses several operations which grow 𝑂(𝑁2) to solve the equations in a finite

number of steps. On the other hand, Richardson requires 𝑂(𝑁2) to reduce the error by a

given factor. This is reflected in the log(𝜀−1) factor. This can be seen as a disadvantage

because the system of equations is not solved “exactly”, but also it may be considered an

advantage in certain situations because a reasonably good approximation can be obtained

at a low cost. For instance, for a nonlinear problem, the linear solution is needed for each

iteration of the outer loop. For the initial iterations, it is not needed a very low error; so,

32

the tolerance 𝜀 may be chosen high (for instance 10−3) for the first iterations and then

lowered to 10−6 for the final iterations.

Regarding memory storage, Richardson only needs to store the non-null coefficients,

there is no “fill-in” as in the direct methods that require factorization. The number of non-

null coefficients is a fixed number (5 for the example presented) per node, so that

𝑁𝑚𝑒𝑚(Richardson) = 𝑂(𝑁) (20.84)

Then, Richardson iteration, as compared with the direct-banded method, does not have a

major difference in computing time but it represents a huge difference in memory storage.

Consider for instance a mesh of 𝑀 = 1000 steps per side and 𝑁 = 106 unknowns, then,

the memory requirements for dense matrix would be 𝑁𝑚𝑒𝑚 (dense) = 1012 coefficients

(8 TB in double precision), 𝑁𝑚𝑒𝑚(banded) = 2𝑒9 coefficients (16 GB),

𝑁𝑚𝑒𝑚 (Richardson) = 5𝑒6 coefficients (40 MB).

Improved iterative methods that have significantly lower iteration count are presented in

the following sections.

20.3.5 Krylov space-based iterative methods

Krylov space-based iterative methods exhibit a convergence far superior to the stationary

methods. The formal definition is as follows. Given an initial vector 𝑥0, the iteration

vector 𝑥𝑘 is defined as the vector that minimizes the norm of the error in the affine space

x0 + 𝒦𝓀, where 𝒦𝓀 is the Krylov subspace defined as

𝒦𝓀 = span{𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑘−1𝑟0},  k ≥ 1 (20.85)

This is known as the minimization property of the Krylov methods.

20.3.5.1 The Conjugate Gradient method

The norm to be minimized is the so-called energy norm, i.e.

‖𝑥𝑘 − 𝑥‖𝐴
2 = (𝑥𝑘 − 𝑥)𝑇 ⋅ 𝐴 ⋅ (𝑥𝑘 − 𝑥) (20.86)

It can be shown that this is actually a norm because 𝐴 is a symmetric positive definite

matrix (SPD). For this kind of matrices, there is a very efficient algorithm to compute the

sequence 𝑥𝑘, namely the Conjugate Gradient (CG) algorithm. CG does not need to store

the whole basis of the Krylov space, but rather operates on a fixed set of 4 iteration

vectors. So, the memory storage needed amounts to 4 vectors (of size 𝑁) and, of course,

the matrix 𝐴 in compact sparse form (5 non-null coefficients per row). Regarding

computing time, the computational cost to compute a new vector in the sequence is one

matrix-vector product and a fixed number (5 in total) of vector operations. Here, vector

33

operation stands for scalar products, sums of vectors, or scalar multiple of vectors, i.e.

many operations that require 𝑂(𝑁) floating-point operations.

Regarding the convergence rate of CG, there is a bound given by

‖𝑥𝑘 − 𝑥‖𝐴 ≤ 2 𝑚CG
𝑘‖𝑥0 − 𝑥‖𝐴 (20.87)

where the amplification factor 𝑚 is given by

𝑚CG =
√𝜅 − 1

√𝜅 + 1
 (20.88)

as the condition number is normally large (𝜅 ≫ 1) this can be simplified to

𝑚CG ≅ 1 −
2

√𝜅
 (20.89)

So, the number of iterations is now

𝑛𝑖𝑡𝑒𝑟(CG) =
log(𝜀−1)

log(|𝑚CG|)
≅

√𝜅 𝑙𝑜𝑔(𝜀−1)

2
(20.90)

which is much lower than Richardson’s method.

In addition, the rate of convergence given by equations (20.87) and (20.88) is a lower

bound; the actual rate of convergence is usually better. Firstly, consider the Krylov space

by equation (20.85). As the iterations proceed, the number of vectors in the generating

sequence {𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑘−1𝑟0} grows. It can be shown that, for SPD matrices, all of

them are linearly independent; then at iteration 𝑘 = 𝑁 the Krylov space fills the whole

ℝ𝑁space, and then the iteration vector (by the minimization property) reaches the solution

𝑥𝑘 = 𝑥. That means that CG is not an iterative method, but rather a direct method, i.e., it

reaches the solution in a finite number of iterations. In practice, this condition is rarely

reached for large systems (let’s say 𝑁 > 105) since iteration is usually stopped much

earlier. However, it is an indication that the convergence rate for CG accelerates as the

number of iterations proceeds.

Another difference between Krylov and stationary methods is that even if an estimation

of the convergence rate based on the condition number 𝜅 can be found, the convergence

of Krylov methods is much more complex than that. Its convergence depends not only on

the condition number (i.e., on the maximum and minimum eigenvalues) but rather on the

actual distribution of the eigenvalues on the real axis.

For instance, consider the two distributions of eigenvalues, as shown in Figure 20.12.

Both have the same condition number 𝜅 = 𝜆max/𝜆min but, in the lower one, they are

34

clustered in two subintervals [𝜆min, 𝜆q] and [𝜆r, 𝜆max]. Consequently, the convergence

rate for CG is faster for the system corresponding to the clustered distribution.

Figure 20.12 – Distribution of eigenvalues. In the upper distribution, the eigenvalues are

uniformly distributed in [𝛌𝐦𝐢𝐧, 𝛌𝐦𝐚𝐱]. In the lower distribution, they are concentrated in

two clusters, [𝛌𝐦𝐢𝐧, 𝛌𝐪] and [𝛌𝐫, 𝛌𝐦𝐚𝐱].

Another advantage of CG versus the stationary methods is that CG is parameter-free,

whereas, for instance, the convergence rate for Richardson depends on the choice of the

relaxation parameter 𝜔, whose optimal value depends on the eigenvalues of the operator.

Of course, the eigenvalues of the operator are not known, so the relaxation parameter is

chosen from estimates of them, and then, again, the convergence rate is lower than the

optimal one.

20.3.5.2 Preconditioning

Suppose that a non-singular linear operator 𝑃 is available, such that 𝑃 is close to 𝐴−1,

then the following preconditioned system of equations can be obtained by left multiplying

both sides of the equation by 𝑃

(𝑃𝐴)𝑥 = (𝑃𝑏) (20.91)

𝐴̃𝑥 = 𝑏̃ (20.92)

which is equivalent to the original one, i.e., the solution of both systems 𝑥 is the same.

Since 𝑃 is close to 𝐴−1, it is expected that 𝐴̃ = 𝑃𝐴 is closer to the identity matrix, and

then the condition number of 𝐴̃ is closer to unity, i.e., lower than the condition number of

𝐴. Since the condition number is lower, it is expected that the convergence rate (both for

stationary and for Krylov methods) is better. Regarding the extra cost, note that the right-

hand side 𝑏̃ can be computed only once, at the start of the iteration, so that the increment

per iteration is a matrix-vector product by 𝑃, i.e., computing 𝑦 = 𝑃𝑧, given the vector 𝑧.

So, there is a trade-off between the reduction in the iteration count and the extra cost of

applying the preconditioning. A given preconditioning may be very good at reducing the

number of iterations, but the cost of applying the preconditioned counterbalances this

reduction.

The simplest (and many times quite useful) preconditioning is Jacobi’s

𝑃𝐽 = diag(𝐴)−1 (20.93)

35

 i.e., to divide element-by-element by the diagonal part of 𝐴, specifically, the result of

applying 𝑦 = 𝑃𝐽𝑧 is

𝑦𝑗 =
𝑧𝑗

𝐴𝑗𝑗
 , for 1 ≤ 𝑗 ≤ 𝑁 (20.94)

The cost of such operation is very low, just a vector element-wise division. Jacobi’s

preconditioning fixes many sources of bad conditioning, for instance, the diagonal terms,

see equation (20.51), are proportional to 𝑘/Δ𝑥2, which means that they have large

variations over the domain if there is some type of mesh refinement or the thermal

conductivity of the medium is not constant. Jacobi’s preconditioning can fix these

problems.

There are other pre-conditioning methods available; some of them may be problem-

specific and others purely algebraic. One such preconditioning is the so-called multi-grid

preconditioning. The multi-grid method is an iterative method based on the iteration on

several grids of varying refinements, transferring the residuals and the corrections

between the different meshes of different levels of refinement. Multi-grid is an iterative

method by itself, that can be considered as an alternative to CG and others, but also can

be combined with CG as a preconditioning.

The preconditioned system, eq. (20.92), deserves a comment. Note that even if 𝑃 and 𝐴

are SPD, the product of two SPD matrices is not necessarily SPD, so the preconditioning

cannot be applied as simply as in (20.92). The correct way to apply the preconditioning

is to solve

𝐴̃𝑥̃ = 𝑏̃ (20.95)

With 𝐴̃ = 𝑃
1

2⁄ 𝐴𝑃
1

2⁄ , 𝑥̃ = 𝑃−1
2⁄ 𝑥, 𝑏̃ = 𝑃

1
2⁄ 𝑏, where 𝑃

1
2⁄ is the square root (in the matrix

sense) of 𝐴. With this definition now 𝐴̃ is indeed SPD so that CG converges. But, of

course, 𝑃
1

2⁄ is very hard and expensive to compute. However, there is a modification of

CG, known as Preconditioned Conjugate Gradient (PCG), that produces the iteration

over eq. (20.95) without having to compute 𝑃
1

2⁄ .

20.3.5.3 Matrix free implementation

Note that in contraposition to direct methods, to solve the linear system with iterative

methods like Richardson or CG the matrix does not need to be assembled physically in

memory, nor even as a sparse matrix. They just need a routine to implement the matrix-

vector product. This is called a matrix-free implementation.

Many pre-conditioning ways are possible in the matrix-free form. Most iterative methods

can be implemented in matrix-free form, and libraries that implement those iterative

methods implement them, usually, in functional form, i.e., the user has to implement a

function that, given a vector 𝑥, produces the matrix-vector product 𝑦 = 𝐴𝑥 (or either 𝑦 =
𝑃𝑥 for the preconditioning).

20.3.5.4 Non-SPD matrices. CG over normal equations

If the matrix system 𝐴 is not SPD then CG cannot be directly applied. One possible

strategy is to transform the system into an SPD one. A simple possibility is to multiply

both sides of the system (20.64) by the transpose of 𝐴,

36

𝐴̃𝑥 = 𝑏̃ (20.96)

with

𝐴̃ = 𝐴𝑇𝐴, 𝑏̃ = 𝐴𝑇𝑏 (20.97)

It is easy to show that 𝐴̃ is SPD. The problem with this strategy is that the condition

number of 𝐴̃ is probably close to the square of the condition number of 𝐴,

𝜅(𝐴̃)~ (𝜅(𝐴))2. As 𝜅(𝐴) is usually high, 𝜅(𝐴̃) is much higher and then it would be

impractical to solve.

There is a variation of this strategy

𝐴̃𝑥̃ = 𝑏 (20.98)

with this transformation,

𝐴̃ = 𝐴𝐴𝑇 , 𝑥 = 𝐴𝑇𝑥̃ (20.99)

As before, it can be easily shown that 𝐴𝐴𝑇 is SPD. Both strategies are very similar, and

the main disadvantage is also the high condition number of the modified system. The first

strategy (equation 20.97) is called Conjugate Gradient on the Normal equations to

minimize the Residual (CGNR), and eq. (20.99) is called Conjugate Gradient on the

Normal equations to minimize the Error (CGNE). The term normal equations refer to the

fact that the equations obtained are the same as the so-called normal equations that are

obtained when solving the system in the sense of Least Squares.

Another disadvantage of CGNE and CGNR is that they need not only the matrix-vector

product 𝑦 = 𝐴𝑥, but also the product with the transpose, i.e., 𝑦 = 𝐴𝑇𝑥. If the matrix is

built and stored (for instance in some kind of sparse form), then both operations can be

easily implemented. But this may be difficult to implement in a pure matrix-free form.

Both CGNE and CGNR can be combined with suitable pre-conditioning ways.

20.3.5.5 GMRES

Another strategy to cope with non-SPD matrices is to build the Krylov space, as defined

by eq. (20.85) and proceed with the minimization property to obtain the next iteration.

The disadvantage of this is the cost of storing the Krylov space (which is of size 𝑘𝑁, i.e.,

𝑘 vectors of size 𝑁, at iteration 𝑘) and also at each iteration the minimization property

needs an operation to orthogonalize the new residual 𝐴𝑘𝑟0 with all the vectors in the

space, which amounts to computational cost 𝑂(𝑘𝑁). So, both storage and operation count

grow linearly with the iterations, in contraposition with Richardson and CG and its

variants, where the storage cost and the computational cost per iteration are both 𝑂(𝑁).

For instance, for an SPD matrix, the iterations generated by GMRES and CG are the same

but, of course, CG has a much lower computational cost and much lower storage needs.

As the cost per iteration grows with iterations, it becomes impractical to iterate GMRES

right to convergence. Not only do the iterations become increasingly slower, but also the

stored Krylov space grows in storage, and eventually it simply does not fit in computer

memory. So, the iteration is restarted, i.e., at a certain iteration 𝑛 GMRES is started again,

using 𝑥𝑛, as the new starting point. This process is repeated until convergence, i.e., each

37

𝑛 iterations GMRES is restarted. The restart count 𝑛 is a parameter to be determined by

the user, perhaps by trial and error. An upper bound to 𝑛 is certainly given by the memory

available.

20.3.5.6 Other methods for non-SPD matrices

For mildly non-SPD matrices, i.e., matrices that are non-SPD but not too far, some

methods are somewhat intermediate between CG and GMRES, i.e., they have a

computational cost for iteration 𝑂(𝑁) but are still applicable even if the matrix is not

SPD. One of the most popular is Bi-CG; it is based on keeping the orthogonality of the

vector iterations with respect to the Krylov space, but not necessarily imposing the

minimization property. In that way, the Bi-CG algorithm needs only to store four vectors

and two matrix-vector products. For SPD matrices, Bi-CG is equivalent to CG, at a cost

of roughly double in memory storage and operation count.

Bi-CG may suffer from breakdown, i.e., during iteration at a certain point the iteration

cannot proceed. This is more likely to occur as the matrix is less SPD, i.e., the difference

with respect to an SPD matrix is higher. When this happens, the user can restart Bi-CG

from the last iteration or just switch to GMRES, which is more robust.

There are improvements and variations on Bi-CG, namely Bi-CGSTAB (for Bi-CG

Stabilized), and others (Conjugate Gradient Squared CGS, and Transpose Free Quasi-

Minimal Residual TFQMR). All of them have 𝑂(𝑁) extra storage and 𝑂(𝑁) operation

count per iteration. Bi-CGSTAB and TFQMR do not need matrix-vector operations

involving the transpose matrix.

20.3.5.7 Pure three-diagonal systems

The concepts developed in section 20.2.1 for the discretization of 1D evolution problems

can be extended for other dimensionalities. If 𝑑 is the spatial dimension (𝑑 = 2 for 2D

and so on) then, we have the total number of equations 𝑁 = 𝑀𝑑, and the bandwidth is

𝑎 = 𝑀𝑑−1 and the equation (20.58) transforms into

𝑁𝑜𝑝𝑠(banded) = 𝑂(𝑎2𝑁)~𝑂(𝑁1+2(𝑑−1)/𝑑) (20.100)

i.e., 𝑁𝑜𝑝𝑠 = 𝑂(𝑁) in 1D, 𝑂(𝑁2) in 2D, and 𝑂(𝑁2.33) in 3D.

The 1D case is especially interesting because many TH codes are based on the 1D

discretization of each pipe in a pipe network. In the 1D case, the bandwidth of the matrix

is 𝑎 = 1, and the cost of both solution and memory storage is 𝑂(𝑁), which is the lowest

possible cost (up to a multiplicative constant) for any solution algorithm (direct or

iterative), since, at least, any such algorithm would need to perform at least one arithmetic

operation on each of the coefficients and unknowns. There are specialized variants of the

Gauss elimination that may be more efficient than the standard version (by a

multiplicative constant), for instance, the Thomas algorithm.

20.3.5.8 Network three-diagonal systems

Consider now a closed loop, i.e., a pipe where the outlet of the pipe is connected to its

inlet. In such a case the matrix would look like this

38

𝐊 =

[

𝑘11 𝑘12 0 0 ⋯ ⋯ ⋯ 𝑘1𝑁

𝑘21 𝑘22 𝑘23 0 ⋯ ⋯ ⋯ ⋯
0 𝑘32 𝑘33 𝑘34 0 ⋯ ⋯ ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

𝑘𝑁1 0 0 0 0 0 𝑘𝑁,𝑁−1 𝑘𝑁𝑁]

(20.101)

The matrix is three-diagonal, except for the coefficients 𝑘1𝑁 and 𝑘𝑁1. So, the bandwidth

is 𝑎 = 𝑁 and the cost would be very high (𝑂(𝑁3) with a dense direct method). However,

a simple algebraic trick can still recover the 𝑂(𝑁) cost.

Note that the system can be recast in the following form, by separating explicitly the last

row and column,

𝐀𝛟̃ + 𝜙𝑁𝐰 = 𝐟 (20.102)

𝑘𝑁,1𝜙1 + 𝑘𝑁,𝑁−1𝑘𝑁,𝑁−1𝜙𝑁−1 + 𝑘𝑁,𝑁𝜙𝑁 = 𝑓𝑁 (20.103)

where 𝐀 is the upper-left block of size (𝑁 − 1) × (𝑁 − 1), i.e.

𝐀 =

[

𝑘11 𝑘12 0 0 ⋯ ⋯ ⋯
𝑘21 𝑘22 𝑘23 0 ⋯ ⋯ ⋯
0 𝑘32 𝑘33 𝑘34 0 ⋯ ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 0 0 0 𝑘𝑁−1,𝑁−2 𝑘𝑁−1,𝑁−1]

(1. 104)

and 𝐰 is a vector composed of the first 𝑁 − 1 coefficients of the last column

𝐰 =

[

𝑘1𝑁

𝑘2𝑁

0
⋱

𝑘𝑁−1,𝑁]

(20.105)

and

𝐟 =

[

𝑓1
𝑓2
0
⋱

𝑓𝑁−1]

(20.106)

Note that, from equation (20.102), the solution can be put as

𝛟̃ = (𝐀−𝟏𝐟) − 𝜙𝑁 (𝐀

−𝟏𝐰) = 𝐱 − 𝜙𝑁 𝐲 (20.107)

39

Both auxiliary vectors 𝐱 and 𝐲 can be computed, and then, 𝛟̃ is a linear combination in terms

of 𝜙𝑁

𝜙1 = 𝑥1 − 𝜙𝑁 𝑦1, 𝜙𝑁−1 = 𝑥𝑁−1 − 𝜙𝑁 𝑦𝑁−1 (20.108)

Now, these expressions can be inserted in equation (20.103) and a linear scalar equation on

𝜙𝑁 is obtained. This equation is solved and then replaced in equation (20.102) and

𝛟̃ (and then 𝛟) is obtained.

The full algorithm is as follows,

1. Compute auxiliary vectors 𝐱 and 𝐲 from 𝐀𝒙 = 𝐟, 𝐀𝐲 = 𝐰.

2. Obtain 𝜙𝑁 by replacing eq. (20.108) in eq. (20.103) and solving the resulting linear

scalar equation for 𝜙𝑁.

3. Finally, obtain 𝛟̃ replacing 𝜙𝑁 in eq. (20.102).

Note that the cost of the algorithm is mainly the solution of two linear three-diagonal systems

so that it is 𝑂(𝑁). In addition, the coefficient matrix is the same in both cases, so it must be

factored in only once.

This procedure can be extended to networks of pipes. The variables that have coefficients

out of the three-diagonal part (like 𝜙𝑁 in this example) are called network variables, and

their equations are called network equations. Leaving free the network variables, a three-

diagonal system is obtained. The system must be solved for each of the 𝑚 network variables,

and then replacing the resulting expression in the network equations, a linear system of size

𝑚 × 𝑚 is obtained. The total cost of the algorithm is 𝑂(𝑁𝑚 + 𝑚3). This is very convenient,

provided that 𝑚 is low.

20.3.5.9 Solution of elliptic equations using ADI methods

In the previous sections, the solution of elliptic problems was presented in terms of

iterative methods. In this way, it is possible to solve a relatively large number of

simultaneous equations with minimum use of computer memory arising from a detailed

discretization of the space domain. Considering equation (20.44) and imposing boundary

conditions, it is possible to obtain the solution for steady-state using the transient method

as a pseudo iterative one. When the steady-state is reached, the solution corresponds to

the elliptic problem. In this case, the intermediate computed solutions are not relevant.

When x = y, the ratio t/x2 = t/y2 may be considered an iteration parameter. The

convergence to steady-state may be optimized by using repeated sequences of values. The

details of the determination of these values may be obtained considering Peaceman and

Rachford, (1955).

20.3.6 Parallel implementation of direct and iterative methods

Nowadays computers usually have many cores, even personal computers, and notebooks.

Computing servers have dozens of cores, and HPC equipment may allow the user to run

on several nodes with dozens of cores, i.e., hundreds of cores or more. Most of the thermo-

hydraulics codes can exploit this computing power. There are two almost exclusive

computing technologies to use parallelism, namely Message Passing Interface (MPI) and

40

OpenMP. OpenMP can only be used with multi-core processors, i.e., so-called shared

memory architectures, while MPI can be used in both shared memory and distributed

memory (i.e., computing nodes in an HPC cluster). Most commercial and open-source TH

codes support either one or both technologies

Parallelism can be used both in building the linear system and in the solution of the

resulting system for each time step. Direct methods cannot efficiently be parallelized, so

iterative methods are almost normally used in parallel architectures. It is conceptually

easy to parallelize iterative methods; vectors are distributed among the processors, and

each processor computes the contribution of some part of the matrix-vector products. Of

course, for a given problem with a given computational mesh, if the number of processors

is increased, at a certain point there is more communication between the processors than

computations to be performed so that the parallelization does not scale beyond that

number of processors. The user should determine this limit by trial and error, and as a

rule, it can be expressed as the number of unknowns per core. Typically, the scaling limit

is within 𝑂(104 − 105) unknowns per core.

20.4 The solution of Hyperbolic PDEs

20.4.1 First order equations, scalar transport

Consider the momentum equation for the one-dimensional form of the Navier-Stokes

equations, in its simplest form,

 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕𝑝

𝜕𝑥
= 𝜇

𝜕2𝑢

𝜕𝑥2
 (20.109)

where 𝜌 is density, 𝑢 velocity, 𝑝 pressure, and 𝜇 viscosity. We can easily identify the

temporal, advective, and pressure term on the left-hand side, and the viscous term on the

right-hand side.

To have a single equation with a single variable, we drop the pressure term and consider

constant properties 𝜌 and 𝜇,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
 (20.110)

This is the advection-diffusion equation. 𝜈 = 𝜇/𝜌 has units of m2/s and is called the

kinematic viscosity of the fluid.

Here, the equation has been derived for the velocity 𝑢 but is valid as the general transport

equation for scalar variables, like temperature, species concentration, and many others.

In those cases, we will denote 𝑢 the scalar field being transported and 𝑎 the transport

velocity, i.e.

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕2𝑢

𝜕𝑥2
(20.110)

41

 𝛼 is the diffusivity of the scalar field in the fluid. In the transport of scalar fields, other

than velocity, the process is called “advection”, instead of “convection”. That is, the term

convection is then reserved for the case when the transported quantity is the same as the

velocity.

When the diffusive term is null (i.e. 𝛼 = 0) we talk of “pure advection” and the equation

is hyperbolic. When the diffusive term is not null the equation is parabolic.

In what follows, we will focus on the convective term 𝑎 𝜕𝑢 𝜕𝑥⁄ and its discretization.

This term poses several problems. On one hand, if the first derivative is discretized with

centered three-point schemes, then non-physical oscillations arise in the solution when

the convective term dominates. On the other hand, in the case of convection, as posed in

eq. (20.110), the term is non-linear, while the other terms are linear. This also poses

numerical problems and instabilities.

20.4.2 The method of characteristics

Consider now the case of pure advection with constant velocity 𝑎, i.e

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 0 (20.111)

With initial condition

𝑢(𝑥, 0) = 𝑢̅(𝑥) (20.112)

Where 𝑢̅(𝑥) is the initial value for the scalar 𝑢. We can easily see that the solution is

simply a shift of the initial condition by 𝑎𝑡 at time t, i.e.

𝑢(𝑥, 𝑡) = 𝑢̅(𝑥 − 𝑎𝑡) (20.113)

Because

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= −𝑎𝑢̅′ + 𝑎𝑢̅′ = 0 (20.114)

This means that the value of 𝑢 is preserved along the lines 𝑥 = 𝑎𝑡. These lines are called

"characteristics" and can be visualized as the trajectory of particles that move with the

velocity of the fluid. The solution tells that the value of the scalar is preserved along these

trajectories. In the case of advection-diffusion with a finite (but small) diffusivity, we

expect that the value will not be exactly preserved along the characteristics, but rather

there will be some smearing due to the diffusion.

If the velocity field is not constant, i.e., 𝑎 = 𝑎(𝑥, 𝑡), then the characteristic starting at 𝑥𝑝

at 𝑡 = 0 is defined as an ordinary differential equation, see Figure 20.13,

42

Figure 20.13 – Characteristic trajectory for scalar advection with variable velocity.

𝑑𝑥𝑝

𝑑𝑡
= 𝑎(𝑥𝑝(𝑡), 𝑡), 𝑥𝑝(𝑡 = 0) = 𝑥𝑝0 (20.115)

This property of the hyperbolic equations induces a numerical method, which is then

called the "Method of Characteristics" (MOC). Given the nodal values 𝑢𝑗
𝑛 of 𝑢 at nodes

𝑥𝑗 = 𝑗Δ𝑥 at time 𝑡𝑛 = 𝑛Δ𝑡 (point A, see Figure 20.14), then we can obtain the values at

𝑡𝑛+1 by tracing back the characteristic that passes by the target point 𝑥 = 𝑥𝑗,𝑡 = 𝑡𝑛+1 and

find its position at 𝑡 = 𝑡𝑛, i.e. solving for the characteristics equation (20.115) backward

in time from 𝑡 = 𝑡𝑛+1 to 𝑡 = 𝑡𝑛 (point A' in Figure 20.14).

Figure 20.14 – Method of characteristics.

Once the point A' is determined the new nodal values are determined as

𝑢𝑗
𝑛+1 = 𝑢𝑛(𝐴′) (20.116)

If the velocity field is 𝑎 > 0 then the source point A' falls to the left of 𝑥𝑗. If the velocity

were negative, it will fall to the right. For small time steps, the source point will fall in

43

one of the cells adjacent to 𝑥𝑗, for larger time steps the source point may fall farther, two

or more cells from the target point. The number of cells traversed by the particle (i.e., the

characteristic) in the time step Δ𝑡 is simply the CFL number.

It remains to explain how to solve numerically the ODEs for the characteristics, and then

how to interpolate the discrete values of the field at 𝑡𝑛 to the source point A'. There is a

variety of possibilities to do this, giving rise to methods of different precision. Note that

if the velocity field is constant and the time step is adjusted so that Δ𝑥 = 𝑎Δ𝑡 (i.e., CFL=1)

then the point A' is coincident with one grid point at the time 𝑡𝑛, and so the scheme

amounts simply to a shift of one cell on the values

𝑢𝑗
𝑛+1 = 𝑢𝑗−1

𝑛 (20.117)

Then there is no loss of information, and the solution is exact. The same happens in

general if 𝑎Δ𝑡 = 𝑛Δ𝑥, with 𝑛 integer (i.e., CFL an integer number). On the other hand, if

the CFL number is 𝐶 = 0.5, then A' will fall half in between 𝑥𝑗and 𝑥𝑗−1. If linear

interpolation is used, we will have

𝑢𝑗
𝑛+1 =

𝑢𝑗−1
𝑛 + 𝑢𝑗

𝑛

2
 (20.118)

Then, if we have a very sharp step-like initial field

 𝑢𝑗
0 = [0,0,0. . . ,0,1,1,1. . .], at 𝑡 = 0, (20.119)

then we will have

 𝑢𝑗
1 = [0,0,0. . . ,0.5,0.5,1,1. . .], at 𝑡 = Δ𝑡, (20.120)

 𝑢𝑗
2 = [0,0,0. . . ,0.25,0.5,0.75,1,1,1. . .], at 𝑡 = 2Δ𝑡, (20.121)

and so on, with consequent strong smearing of the step. However, the BFECC method,

Dupont and Liu, (2003), for Back-and-Forth Error Compensation and Correction can fix

this problem in a very simple and efficient way.

Note that, unlike most other numerical methods, MOC doesn't need the solution of a

system of equations. It is based mostly on the tracking of particles. Many methods related

to or derived from MOC are known also as Lagrangian (or, better, semi-Lagrangian)

because they are based on the Lagrangian point of view of mechanics (i.e., following

material points) in contrast to the Eulerian point of view.

44

20.4.3 Numerical approximations to the solution of hyperbolic PDE.

The extension of the pure advection equation (20.111) to many coupled fields is

𝜕𝑼

𝜕𝑡
+ 𝑨

𝜕𝑼

𝜕𝑥
= 0 (20.122)

where now 𝑼 is an array of 𝑚 fields and 𝐴 is a matrix of size 𝑚 × 𝑚, that may be, in

general, a function of position 𝑥 and time 𝑡. In the nonlinear case, it may be also a function

of the flow field 𝑼. Many important physical problems can be put in this form, for

instance, gas dynamics, shallow water, Maxwell equations for electromagnetics, or the

wave equation. The system is hyperbolic if 𝑨 is diagonalizable with real eigenvalues, i.e.,

there exists a set of 𝑚 linearly independent eigenvectors 𝒔𝑗and real eigenvalues 𝜆𝑗 such

that,

 𝑨𝒔𝒋 = 𝜆𝑗𝒔𝒋, 𝑗 = 1, ⋯ ,𝑚 (20.123)

or, in matrix form

 𝑨𝑺 = 𝑺𝚲 (20.124)

with 𝚲 a diagonal matrix with real diagonal entries 𝜆𝑗, and 𝑺 real and non-singular. Note

that this is the case if 𝑨 is real and symmetric, but this is not required. As the 𝒔𝑗 are linearly

independent, we can decompose any given state 𝑼 as a linear combination of them, i.e.,

 𝑼 = ∑𝑣𝑘𝒔𝑘

𝒌

 (20.125)

Replacing in the evolution equation (20.122) we get,

𝜕

𝜕𝑡
(∑𝑣𝑘𝒔𝑘

𝒌

) + 𝑨
𝜕

𝜕𝑥
(∑𝑣𝑘𝒔𝑘

𝒌

) = 0 (20.126)

(∑𝒔𝑘

𝜕𝑣𝑘

𝜕𝑡
𝒌

) + (∑
𝜕𝑣𝑘

𝜕𝑥
𝑨𝒔𝑘

𝒌

) = 0 (20.127)

∑𝒔𝑘 (
𝜕𝑣𝑘

𝜕𝑡
+ 𝜆𝑘

𝜕𝑣𝑘

𝜕𝑥
)

𝒌

= 0 (20.128)

But, as the 𝒔𝒌 are linearly independent,

45

𝜕𝑣𝑘

𝜕𝑡
+ 𝜆𝑘

𝜕𝑣𝑘

𝜕𝑥
= 0, 𝑘 = 1,⋯ ,𝑚 (20.129)

This means that the original system of equations is decoupled in 𝑚 independent scalar

equations, with 𝜆𝑘being the velocity for the 𝑘-th characteristic component of the field 𝑣𝑘.

The sign of the eigenvalues 𝜆𝑘 represents the sense of propagation for that field. Fields

with 𝜆𝑘 > 0 propagate from left to right and vice versa. The method of characteristics as

was described could be used for each of the characteristic fields 𝑣𝑘. If the 𝜆𝑘 have a

different sign (some positive and some negative) then the updated value of the vector field

𝑢𝑗
𝑛+1 will depend on the value of cells at both sides of the position 𝑥𝑗.

Many numerical methods that are developed for the scalar case (𝑚 = 1) can be extended

easily to the hyperbolic system case (𝑚 > 1) by simply replacing the velocity 𝑎 by the

advective Jacobian 𝑨. The same applies to stability criterion, precision, and other criteria.

As an example, we will focus on the well-known Lax-Wendroff scheme.

The Lax-Wendroff scheme can be developed as a direct application of the operator

expansion as explained in section 20.2.1. Formally we can solve equation (20.111) in

operator form as

𝑢(𝑡 + Δ𝑡) = exp (−Δ𝑡 𝑎
𝜕

𝜕𝑥
) 𝑢(𝑡) (20.130)

Performing a Taylor expansion to second-order we get,

𝑢(𝑡 + Δ𝑡) = (1 − Δ𝑡 𝑎
𝜕

𝜕𝑥
+

Δ𝑡2 𝑎2

2

𝜕2

𝜕𝑥2
+ 𝑂(Δt3)) 𝑢(𝑡) (20.131)

Now, using second-order centered finite differences for the spatial derivatives the Lax-

Wendroff numerical scheme is obtained

𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 − Δ𝑡 𝑎
𝑢𝑗+1

𝑛 − 𝑢𝑗−1
𝑛

2𝛥𝑥
 +

𝛥𝑡2 𝑎2

2

𝑢𝑗+1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛

𝛥𝑥2

(20.132)

which can be written as

𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛

Δ𝑡
+ 𝑎

𝑢𝑗+1
𝑛 − 𝑢𝑗−1

𝑛

2Δ𝑥
=

Δ𝑡 𝑎2

2

𝑢𝑗+1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛

Δ𝑥2
 (20.133)

This scheme is second-order in space and time.

Note that the right-hand side term has the aspect of a diffusion term and comes

consistently from the temporal expansion. It has not to be confused with an artificial

diffusion term. Note that if this term were not present, clearly the scheme would be first-

46

order since it is based on a forward first-order approximation of the temporal term. The

term on the right-hand side not only does add stability to the numerical scheme but also

is fundamental for second-order precision.

The extension for hyperbolic systems (𝑚 > 1) is trivial,

𝑼𝑗
𝑛+1 − 𝑼𝑗

𝑛

Δ𝑡
+ 𝑨

𝑼𝑗+1
𝑛 − 𝑼𝑗−1

𝑛

2Δ𝑥
=

Δ𝑡 𝑨2

2

𝑼𝑗+1
𝑛 − 2𝑼𝒋

𝒏 + 𝑼𝑗−1
𝑛

Δ𝑥2
 (20.134)

Consider now the stability of the scheme in the scalar case. Following a standard von

Neumann analysis, the nodal values are replaced by a plane wave

𝑢𝑗
𝑛 = 𝜇𝑛 𝑒𝑖𝑘𝑥𝑗 (20.135)

with

|𝑘| <
𝜋

Δ𝑥
(20.136)

the wavenumber and 𝜇 (in general a complex number) the amplification factor. In all these

expressions, the imaginary part is neglected, i.e., we assume that just the real part of the

expressions is relevant. Replacing the plane wave in the evolution equation (20.133) we

obtain the amplification factor in terms of the wavenumber,

𝜇 − 1

Δ𝑡
+ 𝑎

𝑒𝑖𝑘ℎ − 𝑒−𝑖𝑘ℎ

2Δ𝑥
=

Δ𝑡 𝑎2

2

𝑒𝑖𝑘ℎ − 2 + 𝑒−𝑖𝑘ℎ

Δ𝑥2
 (20.137)

and, after some algebra

𝜇 = 1 − 𝑖𝐶 sin(kh) − 2𝐶2sin2 (
kh

2
) (20.138)

where 𝐶 = 𝑎Δ𝑡/Δ𝑥 is the CFL number. In Figure 20.15, 𝜇 is a plot in the complex plane

for −𝜋 ≤ 𝑘Δ𝑥 ≤and several 𝐶 from 0.1 to 1.1. It is clear from Figure 20.15 (and can be

shown analytically) that the scheme is stable i.e., |𝜇| ≤ 1, for 0 < 𝐶 ≤ 1. There exists

also an implicit variant of the Lax-Wendroff scheme, which is unconditionally stable, i.e.,

it is stable for all 𝐶 > 0.

The von Neumann analysis for the hyperbolic system case (𝑚 > 1) starts proposing a

plane-wave solution of the form

𝑼𝑗
𝑛 = 𝑼̅ 𝑒𝑖𝑘𝑥𝑗 (20.139)

Replacing this expression in the evolution equation for hyperbolic systems, eq. (20.134),

we obtain that the solution at the next step 𝑛 + 1 is also a plane wave of the form

𝑼𝑗
𝑛+1 = 𝑮𝑼̅ 𝑒𝑖𝑘𝑥𝑗 (20.140)

With

47

𝑮 = 𝑰 − 𝑖
Δ𝑡

Δ𝑥
𝑨 sin(kh) − 2

Δ𝑡2

Δ𝑥2
𝑨𝟐 sin2 (

kh

2
) (20.141)

Figure 20.15 – Stability of the Lax-Wendroff scheme.

Note that, for hyperbolic systems, the matrix 𝑮 plays the role of the amplification factor,

and the CFL number 𝐶 is replaced by the matrix (𝑨 Δ𝑡/Δ𝑥). The scheme is stable

provided that the norm (in fact the spectral radius) of the matrix is less than one, that

means
|𝜇𝑘| ≤ 1 (20.142)

for all eigenvalues of 𝑮. As 𝑮 is a polynomial (of second order) on 𝑨 (𝑮 = 𝑝(𝑨)), it

results that the eigenvalues of 𝑮 are the polynomial evaluated on the eigenvalues of 𝑨,

i.e.

𝜇𝒌 = 1 − 𝑖
Δ𝑡𝜆𝑘

Δ𝑥
 sin(kh) − 2

Δ𝑡2𝜆𝑘
2

Δ𝑥2
 sin2 (

kh

2
) (20.143)

It results then that the stability condition is that the CFL number for each

of the characteristics must be less than one, i.e.

Δ𝑡|𝜆𝑘|

Δ𝑥
≤ 1, for all 𝑘, (20.144)

i.e.,

 Δ𝑡 ≤
Δ𝑥

max(𝜆𝑘)
(20.145)

48

In other words, this means that the maximum characteristic velocity of the system dictates

the stability.

20.5 The validity of computer codes solutions

The determination of the validity of a computer code solution is one of the key issues

concerning the application of TH codes. This results from the combination of many

factors, which received a lot of attention in the last three decades when CFD techniques

became widely available. The goal was to determine the uncertainty associated with the

numerical predictions. In so doing, physical model qualification, computer code

verification, validation, uncertainty determination of code predictions, may be considered

together in the subject of code results qualification and the whole activity conforms to

what is known as code Verification and Validation (V&V), Chapters 13 and 22 of the

book. There is another aspect that must be considered: user qualification, adding a

computational non-specific limitation. The combination of all these aspects justifies the

complexity mentioned.

It is not possible in the limited context of a chapter paragraph even to consider a detailed

list of references on the subject (see Chapters 13 and 22). It would suffice to mention that

the application of TH codes must be done in the domain of the intended applications of a

code, considering the limitations detailed in the code assessment manuals.

To guide the reader on the subject, it may be mentioned that several professional societies

contributed standards or recommendations related to the use of computational codes that

may be applied vis-à-vis to TH and CFD codes. Among the hundreds of authors, the

names of W.L. Oberkampf, T.G. Trucano, P.H. Roache, and F.S. D’Auria are outstanding

in the field of V&V. In what follows, it is assumed that the reader is aware of the different

professional associations and their role.

Peters et al., (2011), reviewed several (different) methods for codes V&V and compared

their approaches. The procedures were those available from ASME, (2008); AIAA,

(1998); ASTM, (2005); Boyack et al., (1990a), and OECD/NEA/CSNI, (2007b).

The compared approaches go well beyond code verification that may be considered the

first step in the V&V activity leading to determining the validity of codes solutions. From

all this work it becomes evident that the validity of a computer code solution implies also

considering the proper determination of the physical model representing the physical

reality. The AIAA Guide, AIAA, 1998, is perhaps the clearer and the more exhaustive,

giving definitions and necessary information to get an overview of the subject. The reader

is referred to this reference without a lack of recommendation of the remaining ones.

The Method of Manufactured Solutions (or MMS) has been systematized by Roache,

(2009), even when more elementary procedures are possible. Patrick Roache also stated

that the verification step is more a question of software and mathematics rather than

49

physical. The idea behind the MMS is to introduce a known arbitrary function in the

model equation, establishing and setting the values on the boundaries as boundary

conditions and computing the solution. This procedure allows, for a given discretization,

computing solution the error in the solution at the points in the grid.

The complexity of the validity of codes solutions also implies the analysis of the validity

of the model governing TH equations, their regularization, and aspects related to the

convergence of the computed solution to the (unknown) theoretical one. These questions

deserved detailed consideration from the FONESYS network, e.g. Ahn et al., (2017).

To illustrate further the aspects that may be considered, the following list adapted and

appended from OECD/NEA/CSNI, (2007b), and Ferreri and Ambrosini, (1998), is

included in the following. Please note that the checklist initially applies to CFD but almost

all the items have a correlate in the application of TH codes. The appended information

on user effects is directly related to TH codes as applied to NPP Safety Analysis. The

reader must consider that no checklist may be considered definitive and keeps evolving.

Initial Preparation

o Produce a clearly written problem description, specifying the system and scenario requiring

analysis, and clearly listing study objectives

o Assemble a panel of experts and go through the Process Identification and Ranking Table

(PIRT) process based upon the problem description

o Do special phenomena such as containment wall condensation require the addition of models to

a standard CFD code or the use of a special purpose CFD package?

o With knowledge of the problem and physical processes select an appropriate CFD code and if

necessary, develop enhancements

o Does the problem require full CFD or are classic TH codes adequate?

o Is coupling required between a CFD and a TH code to supply boundary conditions to the CFD?

Geometry Generation

o Is the coordinate system correct?

o Are the units correct?

o Have any substantial modifications been made to the geometry?

o Is the geometry complete?

o Are there oversimplifications due to symmetry assumptions, etc.?

o Are inlet, outlet, symmetry, and cyclic boundary condition regions located correctly?

o Selection of Physical Models

o Develop a basic understanding of the prevalent physical phenomena and flow fields (part of the

PIRT process)

o Select the appropriate level of turbulence representation (RANS, T-RANS, LES,

hybrid approach)

o For RANS or T-RANS select an appropriate statistical model for turbulence

o Either resolve the wall boundary layer or choose a wall function model

o Establish boundary conditions consistent with your choice of turbulence model

Grid Generation

o Are the grid angles larger than 20° and less than 160°?

o Are the ratios of adjacent volumes less than 2?

o Are the aspect ratios below the values given in the solver manual (typically 10-50)?

o Is the grid scalable?

50

o Are grid nodes concentrated in areas of foreseeable physical significance?

o Does the grid contain non-matching grid interfaces in critical regions?

o Is the grid compatible with the physical models (turbulence model, wall treatments, etc.)?

Numerical Methods

o Generally, avoid the use of first-order upwind spatial discretization and first-order implicit time

integration schemes.

o If first-order methods are used, compare the numerical diffusion coefficient to an

estimate of the turbulent diffusion coefficient at several locations in your mesh

o When using LES, select a higher-order central difference method, preferably 4th order

Verification

o Check for round-off errors

o Check for errors associated with the selection of iteration convergence criteria

o Check for errors associated with the discretization of space and time

o Follow procedures to limit and locate user errors including:

i. selection of a high-quality user interface to the CFD or TH code; and,

ii. use of quality assurance practices.

Validation

o Follow a tiered approach comparing first to separate effects experiments (unit problems) and

working up through complete system experiments

o Where possible use repeat experiments to help quantify the experimental error

o Using guidance from the PIRT process, select target variables and metrics for

agreement between calculation and experiment

o Characterize experimental uncertainty for all target variables, distinguishing between random

and systematic (bias) contributions to the uncertainty

o If sufficient computer resources are available, perform uncertainty analysis on the simulation, to

place bounds on results, and to cross-check the initial PIRT assumptions about the relative im-

portance of physical phenomena

Related to User Effects

Basic user skills on

o Fluid Dynamics (1-p / 2-p)

o Numerical methods: finite volumes and finite differences

o Computational modeling uncertainty evaluation. This includes V&V

o Data structure QA

o Plant layout and related systems

o Full awareness of systems code models and capabilities

Basic user attitudes

o Continuous disposition to check his/her ability as a modeler against benchmark ana-

lytical and experimental scenarios

o Being non-confident of standard rules as applying to every situation

o Keeping confident on the necessary steps to perform a qualified analysis, disregard-

ing non-affordable deadlines

o Avoiding non-essential analysis (i.e., knowing when to stop searching)

Basic user needs

o Being defined as a developer and qualifier of nodalizations or/and the person in

charge of the analysis of scenarios

51

o Respect for his/her patient, time-consuming work for data preparation and qualifica-

tion (a typical, simple NPP nodalization implies nearly 3000 lines of 12 items each)

o Time to seek for convergence of results in each scenario

o Enough time and collaboration for unforeseen aspects of his/her results

o Collaboration for nodalization QA and exploitation regarding plant scenarios

o Respect for his/her interest to check standard modeling criteria for new scenarios

leading the code to its boundaries of validity (these will be of obvious help to under-

stand "strange" results)

o Interacting with colleagues in appropriate forums (users clubs, code developer meet-

ings, and so on)

o Reporting to skilled officers.

To summarize this section, it may be stated that relevant bibliography has been considered

to illustrate a subject (V&V) that is per se an independent activity related to the validity

of computed solutions. The user of TH codes must be aware of these efforts and fulfill

the conditions mentioned as basic skills. The user must consider that the more advanced

and detailed the code is, the need for basic skills including numerical techniques and Fluid

Dynamics increases.

20.6 Automatic computation of sensitivities to parameters in TH codes

The sensitivity of the results of a computational model in TH to system parameters may

be key to the evaluation of their general validity because permits the ranking of

importance that must be attributed to closing correlations and coefficients. There are, at

least, two ways to proceed: a) brute force, i.e., introducing suitable small variations of the

parameters and calculating the derivative of some figure of merit to the parameter by

discrete calculation, and b) generating an alternative version of the code that calculates

the solution and the derivatives simultaneously. The first option is simple and does not

deserve a further explanation, but the computational cost may be prohibitive. In what

follows the second option will be explored in a limited context in TH, namely the

boundaries of neutral flow stability in one-dimensional natural circulation flows. This

choice is not arbitrary but is based on the simple cases that may be considered.

A methodology of analysis based on numerical discretization of partial differential

equations governing fluid-dynamic problems is also useful to get information on the

capabilities of numerical methods in accurately predicting stability. A key point of this

methodology is the evaluation of the derivatives of the Jacobian matrices of the algebraic

relationships that define the numerical method and the related boundary conditions. It is

in this perspective that the use of automatic code differentiation tools plays an interesting

role.

The pioneering work on Automatic Differentiation by Christian Bischof and collaborators

at the Argonne National Laboratory in the nineties, Bischof et al., (1996), and ANL,

(1999), permitted starting the automatic computation of sensitivities to parameters in

conservation equations, among many other applications. The procedure to be considered

in what follows corresponds to discretize first and differentiate later. Therefore, the

sensitivity to physical and discretization parameters is analyzed using a tool for the

52

automatic differentiation of FORTRAN codes. This is so because FORTRAN is the

programming language usually used for programming TH system codes. At least this is

true for legacy codes. ADIFOR (meaning Automatic DIfferentiation of FORtran) is the

adopted tool that allows for evaluating the derivatives of model variables with respect to

model parameters. Bischof et al., (1996), and ANL, (1999), also mention different

implementations for other programming languages.

More recently, Bischof et al., (2007), showed the application of ADIFOR to a large-scale

industrial CFD code like FLUENT, showing that this is not just an academic tool but one

amenable to industrial applications. To get an idea it is enough to mention that the code

generated is nearly 550,000 source lines long. The definitive version of the code was

about 700,000 FORTRAN lines. Bischof et al., (2007), give a brief account of the

significance of code differentiation and establish the difference of ADIFOR with other

symbolic differentiation tools. Results of the final code as applied to the Navier Stokes

equations are shown for a backward step flow and a rotating flow including closure

correlations for turbulence modeling.

To illustrate the application of ADIFOR to fluid flow, an early application is discussed

hereafter, Ferreri and Ambrosini, (2001). A necessary recapitulation consists in

mentioning here that ADIFOR is a pre-processor code that, given a FORTRAN 77 code

that computes a function, automatically generates another, augmented, FORTRAN 77

code. It must be considered that any code may be put in the form of a function, simply by

introducing a call to a main routine after setting parameter values. The latter computes

the function and the derivatives with respect to a list of variables. The user must specify

the list of dependent and independent variables. After generating the augmented code that

calculates the specified derivatives via ADIFOR, the user must provide a new driving

FORTRAN 77 code that considers the new set of variables. Many references document

the accuracy of the derivatives calculated in this way. Bischof et al., (2007), point out,

this is not the only way to apply ADIFOR, nor ADIFOR is the only tool. However, in the

experience of one author of the present chapter (JCF), small problems may be tackled

efficiently.

The analysis will be applied in the limited context of the determination of the neutral

stability boundary in natural circulation in a simple system, amenable to analytical steady-

state treatment. Results have been obtained using implicit coupling of the momentum and

energy equations and the forward time, upwind-space finite-difference method (FTUS)

for the energy equation. The consequences of using this approximation on the results are

well known, i.e., an O(1,1) solution in the space and time increments. However, the

combined effects of these errors and those of the variables coupling and their

quantification are not simple, at least in the field of the stability limits of natural

circulation systems.

To fix ideas, the following approximation, Ambrosini and Ferreri, (1998), is adopted for

the energy equation in the loop:

53

𝑇𝑖
n+1 = (1 - COU) T𝑖

𝑛 + COU Ti-1
𝑛 (i=2, ... , N-1) (20.146)

𝑇𝑁
𝑛+1 = (1 − 𝐶𝑂𝑈 −

𝛥𝑡

𝛥𝑠
𝐹𝑁𝑂𝐷(𝑞𝑛)) 𝑇𝑁

𝑛 + 𝐶𝑂𝑈𝑇𝑁−1
𝑛 −

𝛥𝑡

𝛥𝑠
𝐹𝑁𝑂𝐷(𝑞𝑛) 𝑇1

𝑛+1

(20.147)

𝑇𝑁
𝑛+1 = −𝑇1

𝑛+1

where T is the temperature, q is the volumetric flow rate, n is the time step number such

that tn+1 = tn + t, COU is the Courant number 𝐶𝑂𝑈 =
𝑞⋅𝛥𝑡

𝛥𝑠
 and 𝛥𝑠 =

1

𝑁−1
 is the space

increment, with N being the number of nodes. The function FNOD(q) is a source-sink heat

transfer multiplier, introduced to provide steady-state convergence of eq. (20.147) to the

exact steady-state solution. It is a non-linear function of the variables.

The momentum equation is integrated along the loop and is discretized in time as follows:

𝑞𝑛+1 = 𝑞𝑛 + (𝛼 ⋅ 𝛥𝑠 ∑
𝑇𝑖

𝑛+1+𝑇𝑖+1
𝑛+1

2
 - 𝜀 |𝑞𝑛|𝜉−1 ⋅ 𝑞𝑛+1𝑁−1

𝑖=1)  𝛥𝑡 (20.148)

In equation (20.148),  and  measure, respectively, the driving buoyancy and the friction

in the loop.

The finite-difference procedure defined by equations (20.147) and (20.148) may be

written as

𝑭(𝒚𝑛+1, 𝒚𝑛, 𝒑) = 0 (20.149)

where y is the vector of nodal unknowns, p is the vector of system parameters (COU and

 in this case). Steady-state conditions for a given set of parameters satisfy the

relationship:

𝑭(𝒚𝑠, 𝒚𝑠, 𝒑) = 0 (20.150)

By assuming small perturbations around the steady-state:

𝒚𝑛 = 𝒚𝑠 + 𝛿𝒚𝑛 𝒚𝑛+1 = 𝒚𝑠 + 𝛿𝒚𝑛+1 (20.151)

54

Introducing this in eq. (20.149) and expanding up to the 1st order:

𝑭(𝒚𝑛+1, 𝒚𝑛, 𝒑) = 𝑭(𝒚𝑠, 𝒚𝑠, 𝒑) +
𝜕𝑭

𝜕𝒚𝑛|
𝑠

𝛿𝒚𝑛 +
𝜕𝑭

𝜕𝒚𝑛+1|
𝑠

𝛿𝒚𝑛+1+. . . = 0 (20.152)

Using equations (20.150) and (20.152) leads to

𝜕𝑭

𝜕𝒚𝑛
|
𝑠
𝛿𝒚𝑛 +

𝜕𝑭

𝜕𝒚𝑛+1
|
𝑠
𝛿𝒚𝑛+1 = 0 (20.153)

and finally:

𝛿𝒚𝑛+1 = − [
𝜕𝑭

𝜕𝒚𝑛+1
|
𝑠
]
−1

⋅ [
𝜕𝑭

𝜕𝒚𝑛
|
𝑠
] ⋅ 𝛿𝒚𝑛 (20.154)

Then, in the adopted notation:

𝑨 = − [
𝜕𝑭

𝜕𝒚𝑛+1
|
𝑠
]
−1

⋅ [
𝜕𝑭

𝜕𝒚𝑛
|
𝑠
] (20.155)

The value of  given by:

 = (A) – 1 (20.156)

where (A) is the spectral radius of the matrix A. As told before,  is used as a measure

of the margin in excess to neutral stability and to quantify the degree of damping or

amplification. It takes negative values for stable conditions and positive ones for unstable

conditions. Ferreri and Ambrosini, (2001), obtained the sensitivity of  by calculating

its derivative concerning p using the original code that allowed the calculation of 

itself. This implied obtaining the derivatives of the classical EISPACK path for the

eigenvalues and eigenvectors of a general matrix. It, in turn, imposed a non-trivial

computational effort when N was several hundred.

Here, the calculation of the sensitivity of  to parameters is based on the following

algorithm:

55

Define A and AT, respectively as the matrix relating perturbations at time steps n and n+1 and its transpose.

This matrix may also be specified using ADIFOR. However, second-order derivation to get derivatives of

A with respect to pi is beyond the objective of this paper. Consequently, A will be specified analytically.

Use of ADIFOR to automatically calculate the derivative of A with respect to system parameters

Calculation of the eigenvalues of A and its eigenvectors, i, x.

Calculation of the eigenvectors of AT, v.

Determination of i, the index of the eigenvalue that corresponds to the spectral radius of A and the

corresponding eigenvectors of A and AT.

Calculation of the sensitivity of i with respect to system parameters.

Calculation of the spectral radius sensitivity with respect to system parameters.

The parameter to be considered is , which defines the dependence of the friction term on

the flow type.

The results are as follows. Figure 20.16 shows the stability map in the plane of  and ,

the system physical parameters. They measure, as told before, respectively the buoyancy

and friction resistance in the loop. This map has been obtained using 31 nodes

(dimensionless space increment s = 1/30), Courant number COU = 0.8, and the exponent

of flow rate in the friction term of momentum equation given by  =1.75.

The interest in the analysis to follow is showing how the solution depends on  ( 2-b),

where b is the exponent in the friction law). This has been quantified by calculating the

derivative 𝜕𝛥𝜌 𝜕𝜉⁄ and is shown in Figure 20.17. Further considerations and previous

analyses may be found in Ferreri and Ambrosini, (2001).

Figure 20.16 – Map of  for the first-order, explicit momentum,

implicit temperature coupling, COU=0.8 and =1.75, s = 1/30.

56

Figure 20.17 – Sensitivity map of  to the friction law exponent (/)O for the first-

order, explicit momentum, and implicit temperature coupling. [COU = 0.8,  = 1.75

and s = 1/30].

To summarize, we discussed and exemplified a procedure for computing automatically

sensitivities of code results to system parameters. The limited context gives an idea of the

importance of the technique and is affordable at the expense of some effort of

development.

Acknowledgment

The overview of methods for the numerical solution of the governing equations (or the

content of the chapter) benefits from earlier work by JCF in collaboration with Prof.

Walter Ambrosini, University of Pisa, who is gratefully acknowledged. Work started in

the early 90’s because of the generous hosting of Prof. Francesco Saverio D’Auria in his

group. The friendly atmosphere of many other colleagues was also encouraging.

0 100 200 300 400 500 600 700 800 900 1000



0

2

4

6

8

10



57

REFERENCES

Ahn, S.H., Aksan, N., Austregesilo, H., Bestion, D., Chung, B.D., Coscarelli, E., D’Auria,

F., Emonot, P., Gandrille, J-L., Sauvage, J-Y., Hanninen, M., Horvatovic, I., Kim, K. D.,

Kovtonyuk, A., Lutsanych, S., Petruzzi, A., 2017. Hyperbolicity and numerics in SYS-

TH codes: The FONESYS point of view, J. Nuclear Engineering and Design, Vol 322,

pp 227-239

ASME, 2008. Standard for Verification and Validation in Computational Fluid Dynamics

and Heat Transfer, ASME V&V 20, American Society of Mechanical Engineers, New

York, NY, USA

AIAA, 1998. Guide for the Verification and Validation of Computational Fluid Dynamics

Simulations AIAA Standards. American Institute of Aeronautics and Astronautics, AIAA

G-077, Reston, VA, USA. ISBN 978-1-56347-354-8.

Ambrosini, W., Ferreri, J.C., 1998. The effect of Truncation Error on Numerical Predic-

tions of Stability in a Natural Circulation Single-Phase Loop, Nuclear Eng. and Design,

183, pp 53-76.

ANL, 1999. Computational Differentiation Technical Reports, Argonne National Labor-

atory, Chicago. Ill, USA. http://www.mcs.anl.gov/autodiff/tech_reports.html

ASME, 2008. Standard for Verification and Validation in Computational Fluid Dynamics

and Heat Transfer, ASME V&V 20, American Society of Mechanical Engineers, New

York, NY, USA.

ASTM, 2005. Standard Guide for Evaluating the Predictive Capability of Deterministic

Fire Models. American Society for Testing and Materials, ASTM std. E1355-05a, see

also American National Standards Institute (ANSI), Washington DC, USA.

Bischof, C.H., Carle, A., Khademi, P., Mauer A., 1996. ADIFOR 2.0 Automatic differ-

entiation of Fortran 77 programs, IEEE Computational Science and Eng., 3(3), pp 18-32.

Bischof, C.H., Bücker, H.M., Rasch, A., Slusanschi, E., Lang, B., 2007. Automatic Dif-

ferentiation of the General-Purpose Computational Fluid Dynamics Package FLUENT.

ASME J. of Fluids Engineering, 129, 5, pp 1-17.

Boyack, B.E., Catton, I., Duffey R.B., Griffith, P., Katsma, K.R., Lellouche, G.S., Levy,

S., Rohatgi, U.S., Wilson, G.E., Wulff, W., Zuber, N., 1990a. Quantifying Reactor Safety

Margins. Part I: An Overview of the Code Scaling, Applicability and Uncertainty Evalu-

ation Methodology, J. Nuclear Engineering and Design, Vol 119, 1, pp 1-15.

Douglas, J. Rachford, H.H., Jr, 1956. On the numerical solution of heat conduction prob-

lems in two and three space variables. Trans. Am. Math. Soc., 82(2), p 421.

http://www.mcs.anl.gov/autodiff/tech_reports.html

58

Dupont, T. F., Liu, Y., 2003. Back and forth error compensation and correction methods

for removing errors induced by uneven gradients of the level set function. J. of

Computational Physics, 190(1), pp 311-324.

Ferreri, J.C., 1985. A note on the Advection-Diffusion Equation, Int. J. Num. Methods,

Fluids, 5, pp 593-596.

Ferreri, J.C., Ambrosini, W., 1998, User qualification and NPP safety analysis: a case

dependent issue or a discipline of learning? IAEA Spec. Meet. on User Qualification for

and User Effect on Accident Analysis for Nuclear Power Plants, 31 Aug. - 2 Sept., Vi-

enna, Austria.

Ferreri, J.C., Ambrosini, W., 2001. Calculation of Sensitivity to Parameters in Single-

Phase Natural Circulation Using ADIFOR, Int. J. Computational Fluid Dynamics, 16 (4),

pp 277-281.

Ferreri, J.C., Ambrosini, W., 2002. On the analysis of thermal-fluid-dynamic instabilities

via numerical discretization of conservation equations. Nuclear Eng. Des., 215, pp 153–

170.

Fletcher, C.A.J., 1991. Computational Techniques for Fluid Dynamics, Vol 1,

Fundamental and General Techniques and, Vol 2, Specific techniques for Different Flow

Categories, 2nd Ed, Springer Verlag, Berlin Germany.

Hirt, C.W., 1968. Heuristic Stability Theory for Finite-Difference Equations, J. Comp.

Physics, 2, pp 339-355.

Gresho P., Lee R., 1981. Don´t suppress the wiggles, they are telling you something,

Computers and Fluids, 12, pp 223-231.

Knoll, D., Morel, J., Margolin, L., Shashkov, M., 2005. Physically Motivated Discretiza-

tion Methods A Strategy for Increased Predictiveness, Los Alamos Science, 29, pp 188-

212. Los Alamos, NM, USA.

Laney, C.B., 1998. Computational Gas dynamics, Cambridge University Press, Cam-

bridge, UK.

Marchuk, G.I., 1975. Methods of Numerical Mathematics, Springer Verlag, Berlin, Ger-

many.

LANSCE, 1981. Los Alamos Science, 2, 2, summer/fall, Los Alamos Nat. Lab., NM,

USA.

Mahaffy, J.H., 1982. A stability enhancing two-step method for fluid flow calculations.

J. Comput. Phys., 46, pp 329–341.

Marchuk, G.I., 1975. Methods of Numerical Mathematics, Springer Verlag, Berlin, Ger-

many.

59

Mitchell, A., Griffiths, D., 1980. The Finite-Difference Method in Partial Differential

Equation, John Wiley & Sons, New York, NY, USA.

OECD/NEA/CSNI*, 2007b. Best Practice Guidelines for the use of CFD in Nuclear Re-

actor Safety Applications, NEA/CSNI/R(2007)5, Paris, France.

Peaceman, D.W., Rachford, H.H., Jr, 1955. The numerical solution of parabolic and el-

liptic differential equations. J. Soc. Ind. Appl. Math., 3, pp 28-41.

Peters, S., Tschaepe, L., Zhang, B., Ruggles, A., 2011. V&V Methodology Comparisons:

AIAA G-77, (1998), ASME V&V 20, (2009), ASTM E1355-05a, (2005),

NEA/CSNI/R(2007), and NRC CSAU, (1988). In Proc. 14th Int. Top. Meet. on Nuclear

Reactor Thermal hydraulics, NURETH-14, Toronto, Ontario, Canada, Sept. 25-30.

Roache, P.J., 1972. Computational Fluid Dynamics, Hermosa Publishers, Albuquerque-

Socorro, NM, USA, pp 1-434.

Roache, P.J., 2009. Fundamentals of Verification and Validation, Hermosa Publishers,

Albuquerque-Socorro, NM, USA.

Scannapieco, E., Harlow, F.H., 1995. Introduction to Finite-Difference Methods for Nu-

merical Fluid Dynamics, LA 12984, Los Alamos, NM, USA.

Trefethen, L.N., 1982, Group Velocity in Finite Difference Schemes, Society for Indus-

trial and Applied Mathematics (SIAM) Review, 24, pp 113-135.

Von Neumann, J., Richtmyer, R.D., 1950. A Method for the Numerical Calculation of

Hydrodynamic Shocks, Journal of Physics, 21, pp 232-237.

60

About the AUTHORS of Chapter 20

Juan Carlos Ferreri was born on February 11, 1944. He graduated as Aeronautical

Engineer at La Plata University in 1967 and has dedicated his professional career to the

field of computational fluid mechanics and heat and mass transfer. For thirty years, he

has devoted his work to numerical modeling in Nuclear Safety and Engineering at the

Nuclear Regulatory Authority of Argentina (ARN). He is currently: a) Fellow Member

at the National Academy of Sciences of Buenos Aires –ANCBA (since 2009) and Past

President, from 2017 to 2021; b) Retired Researcher at the National Research Council

(CONICET). He has received the Senior 2004 Award for Research, Professional and

Teaching Achievements in Argentina from the Argentinean Association for Computa-

tional Mechanics (AMCA). He has been a Member and President of the Argentine Com-

mittee for Heat and Mass Transfer (CONICET). He lectured on numerical methods as

applied to natural circulation in nuclear installations and heat transfer effects in soils for

archaeometry purposes in Argentina and abroad (Italy, USA, China, France, and Perú).

In the period 1995-2010, he developed research activities in collaboration with research-

ers at the University of Pisa. He has published more than one hundred-ten papers in his

fields of expertise and has delivered tens of seminars and invited conferences in Argen-

tina and abroad.

Mario A. Storti was born on August 10, 1960. He is Senior Researcher of CONICET at

CIMEC (Center for Computational Methods Research, Santa Fe, Argentina). He gradu-

ated in Physics from the Balseiro Institute, National University of Cuyo, Bariloche in

1983 and in 1990 he obtained his Ph.D. at UN Litoral (Santa Fe, Arg), where he is cur-

rently a professor in undergraduate and graduate programs. He received the 2012 Senior

Scientist Award from the Argentine Association of Computational Mechanics (AMCA).

He has published more than 80 articles in indexed journals, has been an advisor to seven

doctoral theses, organized international conferences and edited seven volumes of the

Computational Mechanics (AMCA) series. He has done numerous transfer activities in

the field of Computational Fluid Dynamics for industrial processes. Prof. Storti currently

participates in the BIOTRAFO project of the European Union.

